基于HBase的矢量空间数据存取关键技术研究
[Abstract]:With the development of information technology and spatial information acquisition technology, the development of global information technology and the wide application of GIS (Geographic Information system), spatial data is growing rapidly. In the face of the increasing amount of spatial data, the traditional spatial data management scheme faces the bottleneck of high concurrent reading and writing and expansibility. Cloud computing can meet the needs of massive data storage, big data parallel processing, high concurrent retrieval and so on. In view of the many advantages of cloud computing technology, this paper focuses on how to use cloud computing technology to access mass vector space data. This paper focuses on the research and design of vector spatial data storage model, spatial index construction, data organization scheme, data import, spatial query strategy and attribute SQL query on HBase. This paper focuses on the following aspects: (1) introduction to the research background of vector spatial data cloud storage and retrieval and analysis of related theory and technology. This paper describes the research background and significance of cloud access for massive spatial data storage, analyzes the general situation of cloud computing at home and abroad, the research status quo of cloud access of spatial data and the shortcomings of current research. Combined with the characteristics of Map Reduce parallel computing framework, the feasibility of vector spatial data parallel processing in Map Reduce is analyzed. The advantages of distributed database HBase and SQL On Hadoop related cloud computing technology in storing and managing massive vector spatial data are discussed. (2) the vector spatial data storage model based on HBase and the integration of No SQL model and relational model are constructed. Vector spatial data management scheme. According to the characteristics of vector spatial data, combined with the HBase data model, the vector spatial data storage model is designed, and the multilevel grid index is designed by using the quadtree hierarchical partition technology. Combined with the clustering characteristics of spatial information multilevel grid coding and Hilbert space filling curve, the vector spatial data identification coding is designed according to HBase database Row Key storage rules, according to HBase database storage rules and Phoenix operation structured data characteristics. This paper proposes and designs a vector spatial data management scheme which integrates No SQL model and relational model. (3) A vector spatial data storage strategy and a parallel spatial index strategy are designed. Combined with the characteristics of Map Reduce parallel processing, this paper discusses and designs the input scheme of single machine importing vector spatial data and Map Reduce parallel processing vector spatial data, and designs a parallel spatial index scheme based on Map Reduce. (4) according to the multi-level grid index strategy, we design a parallel spatial index scheme. Spatial query strategy is designed. According to the characteristics of different spatial query operators, multilevel grid index and HBase scanning query data, the optimization strategy of spatial query operator is designed and implemented. There are three spatial query optimization strategies: merging trellis coding optimizing query strategy and restricting scanning column cluster optimizing data filtering strategy. Finally, the prototype system of vector spatial data access based on HBase is designed and implemented. The grid index and multilevel grid index are implemented. The efficiency of spatial query between grid index and multilevel grid index is compared. The validity of multilevel grid index is verified. Based on the multilevel grid index, the effectiveness of three spatial query optimization strategies, namely spatial query operator optimization strategy, combined grid coding optimization query strategy and restricted scan column cluster optimization data filtering strategy, is verified.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P208
【参考文献】
相关期刊论文 前10条
1 吴黎兵;邱鑫;叶璐瑶;王晓栋;聂雷;;基于Hadoop的SQL查询引擎性能研究[J];华中师范大学学报(自然科学版);2016年02期
2 李德仁;;展望大数据时代的地球空间信息学[J];测绘学报;2016年04期
3 张叶;许国艳;花青;;基于HBase的矢量空间数据存储与访问优化[J];计算机应用;2015年11期
4 宋宝燕;王俊陆;王妍;;基于范德蒙码的HDFS优化存储策略研究[J];计算机学报;2015年09期
5 郑坤;付艳丽;;基于HBase和GeoTools的矢量空间数据存储模型研究[J];计算机应用与软件;2015年03期
6 李清泉;李德仁;;大数据GIS[J];武汉大学学报(信息科学版);2014年06期
7 孟辉;朱美正;张锋叶;;基于Hadoop的矢量空间数据库技术[J];计算机与现代化;2014年02期
8 尹芳;冯敏;诸云强;刘睿;;基于开源Hadoop的矢量空间数据分布式处理研究[J];计算机工程与应用;2013年16期
9 陈崇成;林剑峰;吴小竹;巫建伟;连惠群;;基于NoSQL的海量空间数据云存储与服务方法[J];地球信息科学学报;2013年02期
10 林德根;梁勤欧;;云GIS的内涵与研究进展[J];地理科学进展;2012年11期
相关博士学位论文 前1条
1 范建永;基于Hadoop的云GIS若干关键技术研究[D];解放军信息工程大学;2013年
相关硕士学位论文 前2条
1 祝若鑫;云计算环境下的空间矢量数据存储与管理[D];解放军信息工程大学;2015年
2 丁琛;基于HBase的空间数据分布式存储和并行查询算法研究[D];南京师范大学;2014年
,本文编号:2139716
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2139716.html