基于能量最小化原理的地图要素移位算法研究与改进
[Abstract]:With the rapid development of computer technology and the wide application of geographic information system in the field of cartography, the need for map generalization automation in digital environment is becoming more and more urgent. Although scholars at home and abroad have made a long-term and unremitting exploration on the map synthesis shift algorithm, there are still many problems that have not been effectively solved, which are highlighted in the following aspects: (a) Shift is an optimization problem constrained by a variety of cartographic synthesis rules, but the existing algorithms for all kinds of cartography. Consideration of synthesis rules is insufficient; (b) the corresponding relations between mathematical models, parameters and constraints of map synthesis rules in existing shift algorithms need to be further studied; (c) it is still difficult to maintain the consistency between spatial relations and spatial structures of map objects (groups). Starting from the actual demand of graph space conflict resolution in graph synthesis, this paper analyzes the mechanism of adjacent conflict between map objects and the essential characteristics of displacement operation. Focusing on Beams and Snakes energy minimization displacement algorithm, this paper studies the spatial conflict recognition and displacement of road and building elements in map deeply. Through model and algorithm The main contents of this paper are as follows: (1) Based on the basic concepts of map synthesis shift operation, the mechanism of spatial conflict between map objects is analyzed. On the basis of summarizing the constraints of map synthesis oriented to shift operator, a conceptual framework of shift algorithm is given, and the basic principle and mathematical model of energy minimization algorithm are expounded, which lays the theoretical foundation of this paper. (2) By extending the SDS (Simplicial data structure) map data model, a new shift algorithm is constructed. In this model, the spatial proximity between map objects is clearly defined, and the algorithms of spatial proximity search, skeleton line extraction and spatial proximity conflict recognition among various map objects (groups) are implemented, so as to calculate the displacement. (3) A shape parameter setting method for Snakes model is proposed, which takes into account the grade attribute of road elements and the characteristics of road curved graphics. The displacement effect of the method is controlled to a certain extent by the shape parameters of the model (elastic parameter a and rigid parameter beta), but there is still no quantitative parameter setting method at present. Thus, the hierarchical attributes and graphical features of the road are taken into account, and the adaptability and controllability of shape parameter setting in Snakes model are enhanced. (4) Three improvements are proposed to the Beams energy minimization shift algorithm: (a) A Beams model material parameter automation algorithm is proposed to reduce the complexity of the parameters. Setting method improves the automation level of the algorithm; (b) Applying attraction to the object with too large displacement enhances the control effect of the algorithm on the position accuracy of the map object; (c) Adopting a new iterative strategy, calling the intermediate result of each iteration as a new input to the next iteration process, thus making the model (5) Combining the improved Beams shift algorithm with the auxiliary map data model, two kinds of displacement algorithms supported by spatial auxiliary structures are designed for the displacement problem of two typical map elements, building group and road network: (a) the construction supported by adjacent map Building Group Shifting Algorithm: (b) Road Element Shifting Algorithm Supported by Enhanced Road Network. In Building Group Shifting Algorithm, a neighborhood map expressing the spatial distribution characteristics of buildings is constructed based on CDT skeleton line, and the neighborhood map is adjusted by using local building grouping information, so that the construction can be maintained at both global and local levels. In the algorithm of road element displacement, the supporting effect of spatial auxiliary structure on displacement operation is further expanded, and an enhanced road network is constructed to correlate buildings near displaced road sections and other adjacent roads. The method of dividing the shift operation area centered on the conflict points ensures that the displacement deformation can be fully propagated in a suitable range and better maintains the spatial relationship and spatial distribution characteristics between the road and its adjacent map objects. (6) Based on ArcGIS Engine, the model and algorithm proposed in this paper are implemented. The validity and superiority of the algorithm are verified by several typical road network and building group map data.
【学位授予单位】:武汉大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P208
【相似文献】
相关期刊论文 前10条
1 王晓东;解非线性0-1规划的一个算法及其在结构优化中的应用[J];数值计算与计算机应用;1988年01期
2 张晓;;基于密度聚类算法的异常检测[J];伊犁师范学院学报(自然科学版);2010年04期
3 陈沐天;找周期子字的算法[J];应用数学学报;1991年01期
4 丁才昌;方勃;鲁小平;;分布估计算法及其性能研究[J];武汉大学学报(理学版);2005年S2期
5 石明兰;杨晖;叶东毅;;面向目标的关联规则挖掘的一个FP增长算法[J];集美大学学报(自然科学版);2006年02期
6 张维群;;基于海量数据关联效应测度算法的设计[J];统计与信息论坛;2012年07期
7 罗蕾,徐洪利;构造Dn-最优确切设计的优化方法──离散算法[J];辽宁大学学报(自然科学版);1999年02期
8 贺永恒;王斌;;基于蚁群算法的候选标签子集构造方法研究[J];中国科技信息;2014年06期
9 武小悦,沙基昌;构造网络不交化最小路集的一种新算法[J];系统工程理论与实践;2000年01期
10 姜建国;刘永青;刘梦楠;王国林;李f ;;类电磁机制算法研究与改进[J];计算力学学报;2014年01期
相关会议论文 前2条
1 潘志明;郑骏;钱卫宁;周傲英;;构造XML相似相关结构库的一种有效方法[A];第二十届全国数据库学术会议论文集(技术报告篇)[C];2003年
2 林景亮;董槐林;姜青山;吴书;;一种基于新增阈值的频繁模式挖掘算法[A];第二十三届中国数据库学术会议论文集(研究报告篇)[C];2006年
相关博士学位论文 前9条
1 张磊;基于概念格的角色工程相关算法研究[D];哈尔滨工业大学;2015年
2 孟静;新型Krylov子空间算法及其应用研究[D];电子科技大学;2015年
3 胡芳;复杂网络节点中心性多元评估与社团探测新算法研究[D];华中师范大学;2015年
4 肖建元;保几何结构算法在等离子体物理中的应用[D];中国科学技术大学;2017年
5 刘远刚;基于能量最小化原理的地图要素移位算法研究与改进[D];武汉大学;2015年
6 唐益明;(1,,2,2)型异蕴涵泛三I算法及其应用研究[D];合肥工业大学;2011年
7 牛云云;求解计算困难问题的膜计算模型与算法研究[D];华中科技大学;2012年
8 李冬冬;基因组序列标注的算法与理论研究[D];国防科学技术大学;2004年
9 周琨;航空公司航班运行调度模型与算法研究[D];南京航空航天大学;2012年
相关硕士学位论文 前10条
1 闫铭;基于度量学习的不完整数据聚类方法研究[D];哈尔滨工业大学;2015年
2 张小琼;基于改进萤火虫群优化算法的BP神经网络研究[D];广西大学;2015年
3 李俊杰;基于蚁群算法的聚类区分器设计研究[D];电子科技大学;2014年
4 艾慧;天波雷达电离层污染校正与测高算法研究[D];电子科技大学;2015年
5 陈红强;大规模并行排序学习算法研究[D];西安电子科技大学;2014年
6 郭艳茹;k-中心平面聚类模型与算法研究[D];浙江工业大学;2015年
7 彭辉辉;基于压缩感知的心电信号压缩算法研究[D];东南大学;2015年
8 葛娜;高效用项集动态挖掘算法的研究[D];中北大学;2016年
9 叶馨;闭项集挖掘算法在医保目录制定问题上的研究与应用[D];中国科学技术大学;2016年
10 张靓云;面向微博的事件摘要生成算法研究与实现[D];西南交通大学;2016年
本文编号:2190108
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2190108.html