当前位置:主页 > 科技论文 > 测绘论文 >

基于无人机多光谱遥感影像的地物分类方法研究

发布时间:2018-08-19 17:10
【摘要】:遥感影像的获取与分类技术是遥感监测过程中的基础和关键。以往的航天航空遥感虽然能快速获取大面积遥感影像,但是空间、时间分辨率较低。随着当前无人机和轻小型传感器的发展,使高空间、时间分辨率的低空影像的获取成为可能。当前多光谱影像在应用中易产生“同谱异物”、“同物异谱”等现象,更高的光谱分辨率也让相邻波段间的相关性大大增加,使得计算复杂度和时间复杂度大幅提高。因此对多(高)光谱遥感影像数据进行降维处理是目前应用研究中的一个难点问题。本文面向低空多光谱地物分类,基于最佳波段指数和影像的光谱特征、纹理特征进行最佳波段组合的选择,然后利用支持向量机和最小二乘支持向量机分类方法构建了多组分类模型进行分类对比实验。主要工作及相关研究成果如下:(1)利用大型固定翼无人机搭载轻型多光谱相机搭建无人机遥感影像采集平台并获取了地面分辨率为22.6cm的12波段无人机多光谱遥感影像,再通过Pix4D Mapper对原始图像进行基于特征的配准和特征级的融合得到研究区域的正射影像。(2)针对无人机多光谱影像数据的空间分辨率高、波段间相关性大等特点,综合影像的植被及水体指数等光谱信息,影像主成分分析和灰度共生矩阵计算得到的纹理特征信息及最佳波段指数法筛选的原始波段得到了最佳波段组合来进行地物分类。(3)针对研究区初始得到的波段组合,设计监督分类和非监督分类的对比实验。相对原始波段组合,其中研究区域A的1,6,11,NDVI,NDWI,Mean波段组合的IsoData分类精度从83.57%提高到89.80%,SVM分类精度95.58%提高到99.76%。实验证明此波段组合不仅包含较多的波段信息且波段间相关性系数较低,同时反映了地物的光谱信息和纹理信息,可选择其作为Micro MCA12 Snap的最佳波段组合。(4)针对实验得到的最佳波段组合,分别使用粒子群优化和网格搜索算法进行参数寻优并使用交叉验证的方法对研究区域进行SVM和LSSVM对比实验。实验结果表明,以粒子群优化进行参数寻优得到的LSSVM分类模型,相对SVM粒子群优化分类精度从97.833%提高到99.854%;相对LSSVM网格搜索分类精度从99.762%提高到99.854%。同时LSSVM粒子群优化在一定程度上提高了分类的速度,是针对本文最佳波段组合在地物分类上的理想分类模型。
[Abstract]:The acquisition and classification of remote sensing images is the basis and key in the process of remote sensing monitoring. Although space and aviation remote sensing can obtain large area remote sensing image quickly, the spatial and temporal resolution is low. With the development of UAV and light sensor, it is possible to obtain low-altitude images with high spatial and temporal resolution. At present, multi-spectral images are easy to produce such phenomena as "isospectral foreign bodies" and "isospectral spectra". The higher spectral resolution also increases the correlation between adjacent bands, which greatly increases the computational complexity and time complexity. Therefore, dimensionality reduction of multispectral remote sensing image data is a difficult problem in application research. In this paper, we choose the best band combination based on the best spectral index and the spectral feature of the image, and the texture feature is used to select the best band combination for the low altitude multi-spectral feature classification. Then, support vector machine (SVM) and least squares support vector machine (LS-SVM) are used to construct multi-group classification models for classification comparison. The main work and related research results are as follows: (1) using a large fixed-wing UAV with a light multi-spectral camera to build a UAV remote sensing image acquisition platform and obtain 12-band UAV multi-spectral remote sensing image with ground resolution of 22.6cm. Then, the orthophoto image of the study area is obtained by the feature based registration and feature level fusion of the original image by Pix4D Mapper. (2) aiming at the characteristics of the UAV multi-spectral image data, such as high spatial resolution and large correlation between bands, etc. Spectral information such as vegetation and water body index of integrated image, The texture feature information obtained by principal component analysis and gray level co-occurrence matrix calculation and the original wave band selected by the best band index method are selected to obtain the best band combination for ground object classification. (3) for the initial band combination in the study area, Design the contrast experiment between supervised classification and unsupervised classification. Compared with the original band combination, the IsoData classification accuracy of the study area A is improved from 83.57% to 89.80% from 83.57% to 99.76%. The experimental results show that the band combination not only contains more band information, but also reflects the spectral information and texture information. It can be chosen as the best band combination of Micro MCA12 Snap. (4) for the best band combination obtained from the experiment, Particle swarm optimization (PSO) and mesh search algorithm are used to optimize the parameters, and the cross-validation method is used to carry out the SVM and LSSVM comparative experiments in the study area. The experimental results show that the classification accuracy of relative SVM particle swarm optimization is improved from 97.833% to 99.854, and that of relative LSSVM mesh search and classification is improved from 99.762% to 99.854. At the same time, LSSVM particle swarm optimization improves the speed of classification to a certain extent, which is an ideal classification model for the best band combination in this paper.
【学位授予单位】:石河子大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237

【参考文献】

相关期刊论文 前10条

1 杨龙;孙中宇;唐光良;林志文;陈燕乔;黎喻;李勇;;基于微型无人机遥感的亚热带林冠物种识别[J];热带地理;2016年05期

2 任哲;陈怀亮;王连喜;李颖;李琪;;利用交叉验证的小麦LAI反演模型研究[J];国土资源遥感;2015年04期

3 杨钊霞;邹峥嵘;陶超;田彦平;何小飞;;空-谱信息与稀疏表示相结合的高光谱遥感影像分类[J];测绘学报;2015年07期

4 高林;杨贵军;王宝山;于海洋;徐波;冯海宽;;基于无人机遥感影像的大豆叶面积指数反演研究[J];中国生态农业学报;2015年07期

5 李晓东;姜琦刚;;基于多时相遥感数据的农田分类提取[J];农业工程学报;2015年07期

6 王聪;杜华强;周国模;徐小军;孙少波;高国龙;;基于几何光学模型的毛竹林郁闭度无人机遥感定量反演[J];应用生态学报;2015年05期

7 冯家莉;刘凯;朱远辉;李勇;柳林;蒙琳;;无人机遥感在红树林资源调查中的应用[J];热带地理;2015年01期

8 程多祥;林家元;;宽河道线性基元无人机遥感影像镶嵌配准方法[J];测绘科学;2014年12期

9 李宗南;陈仲新;王利民;刘佳;周清波;;基于小型无人机遥感的玉米倒伏面积提取[J];农业工程学报;2014年19期

10 汪沛;罗锡文;周志艳;臧英;胡炼;;基于微小型无人机的遥感信息获取关键技术综述[J];农业工程学报;2014年18期

相关博士学位论文 前2条

1 贾银江;无人机遥感图像拼接关键技术研究[D];东北农业大学;2016年

2 潘家志;基于光谱和多光谱数字图像的作物与杂草识别方法研究[D];浙江大学;2007年

相关硕士学位论文 前9条

1 裴松年;基于机器学习的分类算法研究[D];中北大学;2016年

2 李毅;遗传改进粒子群优化特征选择的研究与应用[D];云南大学;2015年

3 丁雷龙;基于无人机影像的微山湖地区宜居性评价[D];中国地质大学(北京);2015年

4 范永东;模型选择中的交叉验证方法综述[D];山西大学;2013年

5 蒋韬;基于遗传粒子群优化算法的遥感图像分类方法研究与应用[D];首都师范大学;2013年

6 徐秋辉;无控制点的无人机遥感影像几何校正与拼接方法研究[D];南京大学;2013年

7 何少林;基于无人机遥感影像的土地信息提取及专题图制作研究[D];西南交通大学;2013年

8 李静;高光谱遥感影像降维及分类方法研究[D];中南大学;2012年

9 项霞;基于最小二乘支持向量机的多光谱遥感影像分类[D];武汉大学;2005年



本文编号:2192293

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2192293.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f76a3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com