附有奇异值修正限制的改进的岭估计方法
发布时间:2018-08-25 19:21
【摘要】:最小二乘估计具有无偏性,而岭估计是一种有偏估计,它通过引入偏差降低方差来降低均方误差。在模型出现病态时,岭估计优于最小二乘估计。对岭估计的方差与偏差进行分析发现,岭估计通过修正病态矩阵的奇异值降低均方误差,但对部分较大奇异值的修正不能有效降低均方误差。通过比较修正奇异值的方差下降量与偏差引入量的大小关系确定需要修正的小奇异值,进而改进岭估计方法,实现选择性地修正小奇异值,提出附有奇异值修正限制的改进的岭估计方法,可有效改善岭估计的解算效果和可靠性,实验验证了新方法的可行性和有效性。
[Abstract]:The least square estimation is unbiased, while the ridge estimation is a kind of biased estimation, which reduces the mean square error by introducing the deviation to reduce the variance. When the model is ill-conditioned, the ridge estimation is superior to the least square estimation. By analyzing the variance and deviation of ridge estimation, it is found that ridge estimation reduces mean square error by modifying singular value of ill-conditioned matrix, but correction of partial larger singular value can not effectively reduce mean square error. By comparing the relationship between the variance drop of the modified singular value and the deviation introduced quantity, the small singular value that needs to be modified is determined, and then the ridge estimation method is improved to realize the selective correction of the small singular value. An improved ridge estimation method with singular value correction constraints is proposed, which can effectively improve the solution effect and reliability of the ridge estimation. The experimental results show that the new method is feasible and effective.
【作者单位】: 中南大学地球科学与信息物理学院;
【基金】:国家自然科学基金(41531068,41474008) 国家重点基础研究发展计划(2013CB733303)~~
【分类号】:P207
本文编号:2203857
[Abstract]:The least square estimation is unbiased, while the ridge estimation is a kind of biased estimation, which reduces the mean square error by introducing the deviation to reduce the variance. When the model is ill-conditioned, the ridge estimation is superior to the least square estimation. By analyzing the variance and deviation of ridge estimation, it is found that ridge estimation reduces mean square error by modifying singular value of ill-conditioned matrix, but correction of partial larger singular value can not effectively reduce mean square error. By comparing the relationship between the variance drop of the modified singular value and the deviation introduced quantity, the small singular value that needs to be modified is determined, and then the ridge estimation method is improved to realize the selective correction of the small singular value. An improved ridge estimation method with singular value correction constraints is proposed, which can effectively improve the solution effect and reliability of the ridge estimation. The experimental results show that the new method is feasible and effective.
【作者单位】: 中南大学地球科学与信息物理学院;
【基金】:国家自然科学基金(41531068,41474008) 国家重点基础研究发展计划(2013CB733303)~~
【分类号】:P207
【相似文献】
相关期刊论文 前10条
1 李屹旭;张俊;;奇异改进型岭估计及其在大地测量中的应用[J];贵州大学学报(自然科学版);2007年02期
2 黄幼才;岭估计及其应用[J];武汉测绘科技大学学报;1987年04期
3 汪晓庆;张方仁;;广义岭估计及其在测量平差中的应用[J];武测科技;1991年01期
4 隋立芬;抗差岭估计原理及其应用[J];测绘通报;1994年01期
5 归庆明,黄维彬,张建军;抗差泛岭估计[J];测绘学报;1998年03期
6 刘雁雨;李建伟;刘晓刚;;部分岭估计的岭参数确定方法[J];测绘科学技术学报;2007年06期
7 郑进凤,郭宗河;研究和应用岭估计时值得注意的问题[J];测绘工程;1995年01期
8 冯光财;戴吾蛟;朱建军;陈正阳;;基于虚拟观测的病态问题解法[J];测绘科学;2007年02期
9 隋立芬;抗差岭估计的误差影响测度[J];测绘学报;1995年02期
10 王彬;高井祥;刘超;王坚;周锋;;L曲线法在等价权抗差岭估计模型中的应用[J];大地测量与地球动力学;2012年03期
,本文编号:2203857
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2203857.html