基于机载LiDAR点云的道路提取方法研究
[Abstract]:Road is an important infrastructure related to the national economy. The timely, accurate and efficient acquisition and updating of road information is of great significance to the construction of "intelligent city". Airborne lidar (LiDAR) technology can quickly obtain high accuracy 3D point cloud data, which provides an accurate and reliable data source for road information extraction. However, the existing methods based on LiDAR point cloud can not accurately extract the contour information of the road. Therefore, in this paper, the high precision coordinate information and echo information of airborne LiDAR point cloud are synthetically used to obtain the road information quickly and accurately, and the following research works are carried out: (1) the structure of airborne LiDAR point cloud data is summarized. Characteristics and data processing process, The principle and main methods of point cloud filtering are summarized. (2) the Clode algorithm and the road extraction method based on fuzzy C-means clustering based on intensity information are introduced; (3) the coordinate and echo information of airborne LiDAR point cloud are synthetically used. Based on the TIN constraint method, the DBSCAN clustering algorithm is introduced to extract the road point cloud, and it is compared with the intensity based fuzzy C-means clustering method. The validity of TIN constraint and clustering method is verified. (4) on the basis of road point cloud extraction, road point raster images are processed by mathematical morphology and Hough transform, and road boundary and centerline extraction are realized. Then the regularized road network information is obtained. (5) with the help of high-resolution remote sensing images, the extraction results are analyzed and analyzed by visual interpretation, and the accuracy and completeness are introduced. In order to verify the validity and reliability of the method used to extract road point cloud and road network feature information, three indexes of total quality are evaluated. The research shows that it is feasible to extract the road by combining the 3D coordinates and echo information of LiDAR point cloud. The experimental results show that the method combining TIN constraint and DBSCAN clustering can remove a large number of road misdivision points and better preserve the road point cloud. On this basis, the road raster images are processed by mathematical morphology and Hough transform. More complete road network feature information can be obtained. The research work of this paper has certain reference value for obtaining and updating road information in the construction of "Wisdom City".
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P225.2
【参考文献】
相关期刊论文 前10条
1 刘洋;;基于数学形态学方法的街道数据提取算法[J];北京测绘;2007年03期
2 王永刚;李二森;王忠丰;陈密密;;改进的Hough变换在机场跑道检测中的应用[J];测绘科学;2009年06期
3 顾俊凯;刘聪;崔建军;魏宏安;;基于LiDAR数据的城市道路提取与重建[J];测绘科学;2010年04期
4 曾静静;卢秀山;王健;杨书大;;基于LIDAR回波信息的道路提取[J];测绘科学;2011年02期
5 刘春阁;;基于自适应中值滤波和改进Hough变换的直线提取[J];测绘科学;2011年06期
6 张熠斌;隋立春;曲佳;柳艳;;基于数学形态学算法的机载LiDAR点云数据快速滤波[J];测绘通报;2009年05期
7 龚亮;张永生;李正国;包全福;;基于强度信息聚类的机载LiDAR点云道路提取[J];测绘通报;2011年09期
8 王涛;杨建思;廖明生;;从机载激光扫描数据中提取道路[J];测绘信息与工程;2006年05期
9 冯琰;郭容寰;程远达;;基于机载LIDAR技术快速建立3维城市模型研究[J];测绘与空间地理信息;2008年04期
10 杜灵通;韩秀丽;;基于数字地球思想的数字城市研究[J];地理空间信息;2007年01期
相关博士学位论文 前2条
1 周晓明;机载激光雷达点云数据滤波算法的研究与应用[D];解放军信息工程大学;2011年
2 任自珍;基于等高线特征分析的LiDAR建筑物与道路提取[D];西南交通大学;2009年
相关硕士学位论文 前10条
1 吴昊;单幅模糊图像编辑技术研究[D];安徽大学;2011年
2 曾静静;基于LiDAR点云与CCD影像的建筑物特征提取[D];山东科技大学;2011年
3 龚亮;机载LiDAR点云数据分类技术研究[D];解放军信息工程大学;2011年
4 徐俊;复杂背景下人脸检测研究[D];南京工业大学;2006年
5 周彬;基于数学形态学的图像处理算法研究[D];华北电力大学(北京);2008年
6 赵轲;路面裂缝图像自动识别系统研究[D];长安大学;2009年
7 董丹煌;基于多维数据可听化的视障者行走辅助系统研究[D];浙江大学;2010年
8 周哲;基于LIDAR数据的DLG生产与质量控制技术研究[D];西南交通大学;2012年
9 郎悟灵;基于改进的形态学滤波与区域增长法的建筑物点云数据提取方法研究[D];西南交通大学;2012年
10 刘士程;基于LiDAR数据提取建筑物顶面轮廓线方法研究[D];西南交通大学;2012年
,本文编号:2264605
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2264605.html