EM算法在不完全监测数据处理中的应用研究
[Abstract]:As we all know, the survey work will be affected by the terrain conditions, weather, environment, human factors and other factors, these factors will often lead to the lack of observation data or contain gross error, make the observation data become incomplete. Nowadays, most of the data processing methods for deformation monitoring are based on complete data. If the missing data is not processed, the accuracy of the results will be affected. In the case of missing data, deletion method, general filling method, fitting method or prediction method are often used to process the missing data, and then the data are modeled and analyzed by the conventional method. However, these methods have some limitations. Deletion method is simple and fast to implement, but it leads to the waste of resources. When there are more missing data or in a more important position, the method may lead to the error of the result. The common filling method, the fitting method and the prediction method can improve the processing quality of deformation monitoring data to some extent, but the result must be the best, because these methods are to fill the missing data first. Then the modeling analysis and prediction are carried out. Due to the limitations of these methods there are some uncertainties in the data filled by these methods. Using them for modeling and analysis may lead to the deviation of the results. Based on the above situation, this paper analyzes the mechanism of missing data and the methods of processing missing data, and according to the principle of EM algorithm, a classical algorithm in the field of statistics, which is translated as maximum expectation algorithm, The method of using EM algorithm to deal with deformation monitoring data when it is missing is discussed. In this paper, the research of EM algorithm in incomplete monitoring data processing has been done as follows: (1) the data processing methods commonly used in deformation monitoring are discussed, and these methods are summarized and compared. The application of various methods in surveying and mapping data processing and their advantages and disadvantages are analyzed. (2) according to the mechanism of missing data, the common methods of incomplete measurement data processing are introduced, and the methods of missing data processing are compared. The applicability of various methods is analyzed. (3) the principle and properties of the EM algorithm are introduced, and the steps of processing incomplete monitoring data by combining the EM algorithm with the commonly used prediction model AR (p) model are introduced in detail. By comparing the prediction results of deletion method and regression filling method in the case of single deletion and multiple deletions, The reliability of EM algorithm used in incomplete data processing of deformation monitoring is confirmed. (4) in the case of complete data, GM (1k-1) grey model and BP neural network model are used to predict the settlement data, respectively. The prediction results of AR (p) model estimated by EM algorithm under the condition of single missing data and multiple deletions are compared. By comparison and analysis, it is found that the prediction effect of the four methods is not different, and the prediction accuracy of the AR (p) model estimated by comprehensive comparison with EM algorithm is higher.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P207
【参考文献】
相关期刊论文 前10条
1 唐帅;王方方;;全要素生产率影响行业收入差距的实证研究[J];长安大学学报(社会科学版);2015年03期
2 黄祥;何幼桦;;AR(p)模型中的缺失数据估计[J];应用数学与计算数学学报;2013年04期
3 李鑫;曹显兵;;不完全数据下线性回归模型的参数估计[J];数学的实践与认识;2013年16期
4 占伟;黄立人;刘志广;孟宪纲;;数据缺失对GNSS时间序列分析的影响[J];大地测量与地球动力学;2013年02期
5 温艳清;;EM算法的一个应用[J];山东理工大学学报(自然科学版);2012年06期
6 王凤梅;胡丽霞;;一种基于近邻规则的缺失数据填补方法[J];计算机工程;2012年21期
7 焦明连;吴清海;黄大宁;;矿区地面沉降预测预警系统开发[J];测绘通报;2012年S1期
8 沐守宽;周伟;;缺失数据处理的期望-极大化算法与马尔可夫蒙特卡洛方法[J];心理科学进展;2011年07期
9 徐健锐;李星毅;施化吉;;处理缺失数据的短时交通流预测模型[J];计算机应用;2010年04期
10 杨军;赵宇;丁文兴;;抽样调查中缺失数据的插补方法[J];数理统计与管理;2008年05期
相关博士学位论文 前2条
1 陈伟;自回归模型估计理论及其在变形监测数据处理中的应用[D];武汉大学;2013年
2 陈云;居民收入分布及其变迁的统计研究[D];首都经济贸易大学;2009年
相关硕士学位论文 前10条
1 张宏东;EM算法及其应用[D];山东大学;2014年
2 杜琨;变形监测数据处理的方法研究[D];中南大学;2013年
3 林东方;基于EM算法的不完全测量数据的处理方法研究[D];中南大学;2012年
4 侯贺;缺失数据处理方法的研究及其在软测量技术中的应用[D];东北大学;2011年
5 金成美;缺失数据填补方法研究[D];辽宁工业大学;2011年
6 邓银燕;缺失数据的填充方法研究及实证分析[D];西北大学;2010年
7 李纬;基于GPS的桥梁变形监测数据处理与分析[D];湖北工业大学;2010年
8 史鹏飞;基于改进EM算法的混合模型参数估计及聚类分析[D];西北大学;2009年
9 牟洪洲;建筑沉降监测数据处理组合模型研究[D];长安大学;2008年
10 袁中萸;多元线性回归模型中缺失数据填补方法的效果比较[D];中南大学;2008年
,本文编号:2304700
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2304700.html