基于EEMD去噪和果蝇支持向量机的变形预测方法研究
发布时间:2019-01-27 22:39
【摘要】:变形监测是采集变形体的变形信息的技术方法,对变形信息进行处理分析是变形监测的最终目的。变形数据的预处理可以有效地去除数据中的误差,有利于下一步的变形分析和预报结果精度的提高。由于变形体的变形具有非线性、模糊性和不确定性等特点,变形预测的传统精确数学模型结果与实际情况相差较大。 支持向量机是由Vapnik等人于上世纪90年代基于统计学习理论提出的新的机器学习方法。它能够寻求有限样本数据的最优解,并且比经验风险原理的神经网络学习算法具有更强的理论依据和更好的泛化性能。支持向量机预测模型的参数决定了样本训练误差和对预测样本的推广性,然而目前尚没有完备的理论和方法解决这一问题,只能通过实例仿真以及算法优化。果蝇优化算法是根据果蝇寻觅食物的特性,嗅觉记忆与视觉记忆协同作用下表现出来的群智能。它对于参数的优化选择有着很好的效果,能够做到全局寻优。 本文首先利用集成经验模态分解方法分离出变形数据中的高频噪声信号,并针对高频噪声也含有有用信号的问题,,对其进行阈值量化处理,保留噪声中所含有用信号,完成变形数据预处理工作。然后针对支持向量机参数的选择这一开放性问题,也是实际应用支持向量机预测模型成功的关键问题,利用果蝇算法进行优化选择,结合工程实例,证明果蝇优化算法简化了支持向量机参数选择,避免了实际工程支持向量机预测应用中超参数选择的盲目性。
[Abstract]:Deformation monitoring is a technical method for collecting deformation information of deformable bodies. Processing and analysis of deformation information is the ultimate purpose of deformation monitoring. The preprocessing of deformation data can effectively remove the errors in the data, and it is helpful to improve the accuracy of deformation analysis and prediction results in the next step. Because the deformation of deformable body is nonlinear, fuzzy and uncertain, the results of traditional accurate mathematical model for deformation prediction are quite different from the actual situation. Support vector machine (SVM) is a new machine learning method proposed by Vapnik et al in 1990s based on statistical learning theory. It can find the optimal solution of the finite sample data and has stronger theoretical basis and better generalization performance than the neural network learning algorithm based on empirical risk principle. The parameters of support vector machine (SVM) prediction model determine the sample training error and the generalization of prediction samples. However, there is no complete theory and method to solve this problem, which can only be solved by example simulation and algorithm optimization. Drosophila optimization algorithm is based on the characteristics of searching for food, olfactory memory and visual memory under the synergistic action of swarm intelligence. It has a good effect on the optimization of parameters, and can achieve global optimization. In this paper, the high frequency noise signals in the deformation data are separated by the method of integrated empirical mode decomposition. To solve the problem that the high frequency noise also contains useful signals, the threshold quantization is carried out to retain the signals contained in the noise. Finish the preprocessing of deformation data. Then, aiming at the open problem of parameter selection of support vector machine, which is also the key problem in practical application of support vector machine prediction model, we use Drosophila algorithm to optimize selection, and combine with engineering example. It is proved that the optimization algorithm of Drosophila simplifies the parameter selection of support vector machine and avoids the blindness of super-parameter selection in the application of practical engineering support vector machine prediction.
【学位授予单位】:辽宁工程技术大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP18;P22
本文编号:2416772
[Abstract]:Deformation monitoring is a technical method for collecting deformation information of deformable bodies. Processing and analysis of deformation information is the ultimate purpose of deformation monitoring. The preprocessing of deformation data can effectively remove the errors in the data, and it is helpful to improve the accuracy of deformation analysis and prediction results in the next step. Because the deformation of deformable body is nonlinear, fuzzy and uncertain, the results of traditional accurate mathematical model for deformation prediction are quite different from the actual situation. Support vector machine (SVM) is a new machine learning method proposed by Vapnik et al in 1990s based on statistical learning theory. It can find the optimal solution of the finite sample data and has stronger theoretical basis and better generalization performance than the neural network learning algorithm based on empirical risk principle. The parameters of support vector machine (SVM) prediction model determine the sample training error and the generalization of prediction samples. However, there is no complete theory and method to solve this problem, which can only be solved by example simulation and algorithm optimization. Drosophila optimization algorithm is based on the characteristics of searching for food, olfactory memory and visual memory under the synergistic action of swarm intelligence. It has a good effect on the optimization of parameters, and can achieve global optimization. In this paper, the high frequency noise signals in the deformation data are separated by the method of integrated empirical mode decomposition. To solve the problem that the high frequency noise also contains useful signals, the threshold quantization is carried out to retain the signals contained in the noise. Finish the preprocessing of deformation data. Then, aiming at the open problem of parameter selection of support vector machine, which is also the key problem in practical application of support vector machine prediction model, we use Drosophila algorithm to optimize selection, and combine with engineering example. It is proved that the optimization algorithm of Drosophila simplifies the parameter selection of support vector machine and avoids the blindness of super-parameter selection in the application of practical engineering support vector machine prediction.
【学位授予单位】:辽宁工程技术大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP18;P22
【参考文献】
相关期刊论文 前8条
1 赵国忱;苏运强;范良;;独立分量分析在煤仓沉降分析中的应用[J];测绘通报;2012年06期
2 范良;赵国忱;苏运强;;果蝇算法优化的广义回归神经网络在变形监测预报中的应用[J];测绘通报;2013年11期
3 吕建新;吴虎胜;田杰;;EEMD的非平稳信号降噪及其故障诊断应用[J];计算机工程与应用;2011年28期
4 张学工;关于统计学习理论与支持向量机[J];自动化学报;2000年01期
5 肖正安;;基于果蝇优化算法的模拟滤波器设计[J];湖北第二师范学院学报;2012年02期
6 许智慧;王福林;孙丹丹;王吉权;;基于FOA-RBF神经网络的外贸出口预测[J];数学的实践与认识;2012年13期
7 潘文超;;应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J];太原理工大学学报(社会科学版);2011年04期
8 荣海娜;张葛祥;金炜东;;系统辨识中支持向量机核函数及其参数的研究[J];系统仿真学报;2006年11期
本文编号:2416772
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2416772.html