基于卡方检验的抗差自适应Kalman滤波在变形监测中的应用
发布时间:2019-04-02 14:32
【摘要】:在抗差Kalman滤波的基础上引入双自适应因子,分别对动态模型不准确和观测模型存在粗差进行调节,构建双自适应因子滤波模型。针对抗差自适应Kalman滤波效率较低的缺点,通过构建基于卡方检验的抗差自适应Kalman滤波,先用卡方检验对粗差进行检验,再调用抗差自适应Kalman滤波进行处理。工程实例表明,双自适应因子滤波模型可以很好地抵御粗差,并减弱模型不精确的影响。基于卡方检验的抗差自适应Kalman滤波不仅可以削弱粗差对滤波估值的影响,而且可以提高数据处理的效率。
[Abstract]:Based on the robust Kalman filter, two adaptive factors are introduced to adjust the inaccuracy of the dynamic model and the gross error of the observation model respectively, and the double adaptive factor filtering model is constructed. In view of the low efficiency of robust adaptive Kalman filtering, a robust adaptive Kalman filter based on Chi-square test is constructed. First, the gross error is tested by Chi-square test, and then the robust adaptive Kalman filter is used to deal with it. The engineering example shows that the double adaptive factor filtering model can resist the gross error well and weaken the imprecise influence of the model. The robust adaptive Kalman filter based on Chi-square test can not only weaken the influence of gross error on filtering estimation, but also improve the efficiency of data processing.
【作者单位】: 广西空间信息与测绘重点实验室;桂林理工大学测绘地理信息学院;桂林理工大学广西矿冶与环境科学实验中心;空军大连通信士官学校;浙江省测绘大队;城市空间信息工程北京市重点实验室;
【基金】:国家自然科学基金(41461089) 广西“八桂学者”岗位专项 广西空间信息与测绘重点实验室研究基金(桂科能151400702,151400732,140452402) 广西矿冶与环境科学实验中心课题(KH2012ZD004) 广西自然科学基金(2014GXNSFAA118288) 城市空间信息工程北京市重点实验室项目(2016204)~~
【分类号】:P227;TU196.1
本文编号:2452633
[Abstract]:Based on the robust Kalman filter, two adaptive factors are introduced to adjust the inaccuracy of the dynamic model and the gross error of the observation model respectively, and the double adaptive factor filtering model is constructed. In view of the low efficiency of robust adaptive Kalman filtering, a robust adaptive Kalman filter based on Chi-square test is constructed. First, the gross error is tested by Chi-square test, and then the robust adaptive Kalman filter is used to deal with it. The engineering example shows that the double adaptive factor filtering model can resist the gross error well and weaken the imprecise influence of the model. The robust adaptive Kalman filter based on Chi-square test can not only weaken the influence of gross error on filtering estimation, but also improve the efficiency of data processing.
【作者单位】: 广西空间信息与测绘重点实验室;桂林理工大学测绘地理信息学院;桂林理工大学广西矿冶与环境科学实验中心;空军大连通信士官学校;浙江省测绘大队;城市空间信息工程北京市重点实验室;
【基金】:国家自然科学基金(41461089) 广西“八桂学者”岗位专项 广西空间信息与测绘重点实验室研究基金(桂科能151400702,151400732,140452402) 广西矿冶与环境科学实验中心课题(KH2012ZD004) 广西自然科学基金(2014GXNSFAA118288) 城市空间信息工程北京市重点实验室项目(2016204)~~
【分类号】:P227;TU196.1
【相似文献】
相关期刊论文 前6条
1 李俊毅;郝金明;李军正;;GPS动态相对定位的自适应Kalman滤波算法[J];全球定位系统;2013年05期
2 陆洋;;原子钟状态模型的自适应Kalman滤波算法(摘要)[J];陕西天文台台刊;1992年01期
3 郭海荣;杨元喜;何海波;徐天河;;导航卫星原子钟Kalman滤波中噪声方差-协方差的确定[J];测绘学报;2010年02期
4 许龙;;城市环境下基于降维Kalman滤波的室内导航算法[J];测绘信息与工程;2010年04期
5 侯娟;董绍武;屈俐俐;王继刚;何在民;;自适应Kalman滤波用于实时求解原子钟运行参数[J];天文学报;2012年04期
6 ;[J];;年期
,本文编号:2452633
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/2452633.html