基于Mask R-CNN的高分辨率光学遥感影像的目标检测与实例分割
发布时间:2022-02-17 12:20
从高分辨率影像自动或半自动检测物体是遥感领域的一个重要研究课题。具有较高空间分辨率的光学航空和卫星影像与自然图像之间具有较小的特征间隙。因此,可以将深度学习算法应用于遥感影像的识别中。MaskR-CNN是目前最先进的深度学习模型,它具有强大的并行目标检测和实例分割的能力并在自然图像识别方面取得了很大的进展。本篇硕士论文将最先进的计算机视觉和深度学习领域的技术应用到遥感领域。其目的是探究Mask R-CNN在遥感领域的普适性。此外,由于遥感数据也是矢量地图的重要来源,因此该模型可应用在地图上找到遗漏的地理实体并提高矢量地图的质量。在实践中,由于遥感影像数据量大且有实时分析的需求,因此,提高模型训练速度也是非常重要的。首先我们做了一个多类别实验,检测并同时分割运动场地(棒球场,篮球场,田径场,体育馆,网球场)。此外,我们还通过将较深的骨干网络替换为较浅的骨干网络来评估模型的实际适用性。这个实验的目的是针对相对较小的遥感数据集来权衡结果精度和训练速度。此外,我们还在建筑物数据集上训练了一个单类别Mask R-CNN模型。此外,还使用3种不同的建筑密度(密集,中等和稀疏)数据集进行测试。在运动...
【文章来源】:武汉大学湖北省211工程院校985工程院校教育部直属院校
【文章页数】:68 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
CHAPTER Ⅰ:Introduction
Ⅰ.1 State of the Art
Ⅰ.2 Motivation and Objectives
Ⅰ.3 Outline of the Thesis
Ⅰ.4 Summary
CHAPTER Ⅱ: Review of Related Methods
Ⅱ.1 Object Detection Methods
Ⅱ.1.1 CNN
Ⅱ.1.2 R-CNN
Ⅱ.1.3 SPP-Net
Ⅱ.1.4 Fast R-CNN
Ⅱ.1.5 Faster R-CNN
Ⅱ.1.6 Mask R-CNN
Ⅱ.2 Instance Segmentation Methods
Ⅱ.2.1 Object-oriented Remote Sensing Information Extraction Method
Ⅱ.2.2 Deep Learning Method
Ⅱ.3 Summary
CHAPTER Ⅲ:Data and Methods
Ⅲ.1 Data Preparation
Ⅲ.1.1 Sports Field Detection and Segmentation Task
Ⅲ.1.2 Building Detection and Segmentation Task
Ⅲ.2 Architecture and Training
Ⅲ.2.1 ResNet and FPN Backbone
Ⅲ.2.2 Transfer Learning
Ⅲ.2.3 TensorFlow and Keras
Ⅲ.2.4 Graphical Processing Unit (GPU)
Ⅲ.2.5 Training Details
Ⅲ.2.6 Evaluation Indicators
Ⅲ.3 Summary
CHAPTER Ⅳ: Results and Discussion
Ⅳ.1 Sports Field Detection and Segmentation Results
Ⅳ.2 Building Detection and Segmentation Results
Ⅳ.3 Summary
CHAPTER Ⅴ: Conclusions and Outlook
Ⅴ.1 Conclusions
Ⅴ.2 Outlook
References
ACKNOWLEDGEMENTS
本文编号:3629392
【文章来源】:武汉大学湖北省211工程院校985工程院校教育部直属院校
【文章页数】:68 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
CHAPTER Ⅰ:Introduction
Ⅰ.1 State of the Art
Ⅰ.2 Motivation and Objectives
Ⅰ.3 Outline of the Thesis
Ⅰ.4 Summary
CHAPTER Ⅱ: Review of Related Methods
Ⅱ.1 Object Detection Methods
Ⅱ.1.1 CNN
Ⅱ.1.2 R-CNN
Ⅱ.1.3 SPP-Net
Ⅱ.1.4 Fast R-CNN
Ⅱ.1.5 Faster R-CNN
Ⅱ.1.6 Mask R-CNN
Ⅱ.2 Instance Segmentation Methods
Ⅱ.2.1 Object-oriented Remote Sensing Information Extraction Method
Ⅱ.2.2 Deep Learning Method
Ⅱ.3 Summary
CHAPTER Ⅲ:Data and Methods
Ⅲ.1 Data Preparation
Ⅲ.1.1 Sports Field Detection and Segmentation Task
Ⅲ.1.2 Building Detection and Segmentation Task
Ⅲ.2 Architecture and Training
Ⅲ.2.1 ResNet and FPN Backbone
Ⅲ.2.2 Transfer Learning
Ⅲ.2.3 TensorFlow and Keras
Ⅲ.2.4 Graphical Processing Unit (GPU)
Ⅲ.2.5 Training Details
Ⅲ.2.6 Evaluation Indicators
Ⅲ.3 Summary
CHAPTER Ⅳ: Results and Discussion
Ⅳ.1 Sports Field Detection and Segmentation Results
Ⅳ.2 Building Detection and Segmentation Results
Ⅳ.3 Summary
CHAPTER Ⅴ: Conclusions and Outlook
Ⅴ.1 Conclusions
Ⅴ.2 Outlook
References
ACKNOWLEDGEMENTS
本文编号:3629392
本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/3629392.html