当前位置:主页 > 科技论文 > 测绘论文 >

任意旋转角下三维基准转换的整体最小二乘法

发布时间:2023-11-18 14:24
  三维基准转换中经典的线性Bursa-Wolf模型仅仅适用于旋转角较小的情况,随着测量技术的发展,例如在摄影测量以及三维激光扫描方面,影像匹配和点云配准的本质就是确定任意旋转角下,尤其是大旋转角时三维基准转换的参数。以小旋转角为例,在Bursa-Wolf模型的误差方程的系数矩阵中,一部分是由公共点的源坐标构成,而源坐标即使经过平差处理,还是会含有随机误差或受到随机误差的影响,这与经典最小二乘(Least Squares, LS)的前提假设不相符。兼顾观测向量和系数矩阵中的随机误差,对其进行整体考虑以及全面分析的方法称之为整体最小二乘(Total Least Squares, TLS)。因此,本文任意旋转角下的三维基准转换的整体最小二乘法为研究对象,主要研究内容如下: 基于经典LS的Gauss-Markov模型,研究了三维基准转换的线性模型和非线性模型,并通过仿真实验加以验证,实验结果表明:旋转角较小时,线性模型与非线性模型的解算精度基本一致;在旋转角较大时,线性模型的解算结果严重失真,非线性模型的解算结果较好。 针对经典LS未顾及到系数矩阵中含有随机误差或受到随机误差的影响,引入了兼顾观...

【文章页数】:67 页

【学位级别】:硕士

【文章目录】:
摘要
Abstract
1 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 研究现状
    1.3 研究内容与技术路线
2 基于最小二乘的三维基准转换模型
    2.1 经典最小二乘平差原理
    2.2 三维基准转换模型
    2.3 三维基准转换的线性模型
    2.4 三维基准转换的非线性线性模型
        2.4.1 非线性十三参数模型
        2.4.2 非线性七参数模型
    2.5 仿真实验
        2.5.1 实验一(小旋转角)
        2.5.2 实验二(大旋转角)
    2.6 本章小结
3 加权整体最小二乘的基本原理及算法
    3.1 EIV模型与整体最小二乘基本原理
    3.2 基于非线性拉格朗日函数的WTLS迭代解法
    3.3 基于Newton-Gauss的WTLS迭代算法
    3.4 算例分析
    3.5 本章小结
4 三维基准转换的加权整体最小二乘法
    4.1 加权整体最小二乘的通用模型
    4.2 基于Newton-Gauss加权整体最小二乘的正交约束模型
        4.2.1 解法一
        4.2.2 解法二
        4.2.3 迭代算法
    4.3 算例分析
        4.3.1 实验一
        4.3.2 实验二
    4.4 本章小结
5 结论与展望
    5.1 结论
    5.2 展望
参考文献
致谢
作者简历



本文编号:3865467

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dizhicehuilunwen/3865467.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e35bf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com