高效鲁棒优化和多学科优化及其在公差设计中的应用
发布时间:2017-09-16 17:21
本文关键词:高效鲁棒优化和多学科优化及其在公差设计中的应用
更多相关文章: 高效 优化 多学科 及其 公差 设计 中的 应用
【摘要】:现今工程系统越来越复杂。复杂工程系统的设计优化中面临的第一个挑战是存在于参数和设计变量中的不确定性。参数不确定性在设计优化中扮演着重要角色,它很可能导致原本可行的最优解成为不可行解,从而严重影响系统性能,因此非常有必要开发高效的鲁棒优化(Robust Optimization)算法,从而求解对不确定性的变化不敏感的最优解。工程系统设计优化面对的另一个挑战是,一个复杂工程系统往往涉及多个交叉学科,而这些学科之间有一些共同的全局设计变量,各系统之间也往往存在相互耦合关系。此类优化问题需要保证共享变量在各个相关子系统中的一致性,因此涉及众多优化子问题,从而导致问题复杂度和求解负担急剧增加。因此有必要开发高效的多学科优化(Multi-disciplinary Optimization)算法求解这些全局变量和耦合变量,以便应用于实际工程问题上。以上两种涉及优化问题都存在多层优化(或嵌套优化)结构导致的计算效率低的问题,如鲁棒优化中解决鲁棒约束条件的内层问题及多学科优化中各学科之间一致性的多层优化问题,因此本文重点解决高效的鲁棒优化算法和多学科优化算法的开发问题。作为汽车的核心部件,发动机是一个典型的复杂非线性多学科系统。发动机关键零部件尺寸的不确定性(以公差形式体现)对系统成本和性能都有重要影响,因此其公差设计成为一大关键问题。传统的公差设计是基于设计者的经验,极少考虑到优化或者在整个系统层面进行公差设计。而且,很少研究从不同部件的自主设计和系统层面的综合设计对零部件进行公差设计。本文提出对多发动机公差进行鲁棒优化和多学科优化设计。本文首先提出解决单学科鲁棒优化问题的算法,这些问题的目标函数和约束条件的参数和设计变量中都可能存在不确定性,这些不确定性以区间形式体现;其次本文提出高效的多学科优化算法。本文共有四方面研究内容。研究内容一提出了一种基于二次序列规划算法(Sequential Quadratic Programming)的鲁棒优化算法(SQP-RO),该算法可以有效解决存在区间不确定性的连续可导的高度非线性优化问题,但仍然是具有内外两层优化的结构。基于SQP-RO,研究内容二提出了一种单层优化结构的鲁棒优化算法(A-SQP-RO),基于提出的乌托邦点的概念,算法效率更高。研究内容三提出了顺序多目标优化算法和多学科优化算法,此算法赋予每个子系统充分的优化自主权对局部变量、全局变量和耦合变量进行优化,基于得到的全局和耦合变量的信息,系统层处理后分配给每个子系统进行顺序的优化。基于以上提出的算法,在研究内容四中,本文提出了发动机多学科公差优化问题并求解。以上提出的方法利用相当数量的数值算例和工程算例进行了验证,以展示所提出方法的可行性和有效性。验证结果表明,与确定型最优问题算法SQP相比,提出的鲁棒优化算法可以相对较少的计算量有效解决鲁棒优化问题。所提出的顺序多目标和多学科算法可以得到可观的帕雷托前沿而只需更少的计算量。发动机多学科公差设计将关键尺寸适当压缩,非关键尺寸适当放松,从而在提高系统性能的同时降低制造成本。
【关键词】:
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TK432
【目录】:
- 摘要7-8
- Abstract8-10
- Acknowledgement10-15
- Nomenclature15-20
- Chapter 1 Introduction20-30
- 1.1 Motivation and Objective21-24
- 1.2 Research Thrusts24-27
- 1.2.1 Research Thrust 1: Robust Optimization Based on Sequential QuadraticProgramming25
- 1.2.2 Research Thrust 2: Advanced single-loop RO Algorithm25-26
- 1.2.3 Research Thrust 3: Sequential MOO and MDO Methods26
- 1.2.4 Research Thrust 4: Tolerance Design Optimization for Internal CombustionEngines26-27
- 1.3 Assumptions27
- 1.4 Organization of Dissertation27-30
- Chapter 2 Definitions and Terminologies30-44
- 2.1 Introduction30
- 2.2 Problem Definitions30-35
- 2.2.1 Robust Optimization (RO)31-34
- 2.2.2 Multi-disciplinary Design Optimization (MDO)34-35
- 2.2.3 Multi-objective Optimization (MOO)35
- 2.3 Sequential Quadratic Programming35-37
- 2.4 Matrix decomposition method for QPs subject to box constraints37-38
- 2.5 Design of Experiment (Do E)38-39
- 2.6 Gaussian Process (GP) Modeling39-44
- Chapter 3 Robust Optimization Based on Sequential Quadratic Programming44-76
- 3.1 Introduction44-48
- 3.2 Sequential Quadratic Programming Approach for Robust Optimization48-61
- 3.2.1 Approach to solve the objective robustness index49-54
- 3.2.2 Approach to solve the constraint robustness index54-55
- 3.2.3 SQP for Robust Optimization (SQP-RO)55-59
- 3.2.4 Computational efficiency of SQP-RO59-61
- 3.3 Test Examples and Comparison Results61-74
- 3.3.1 Nonlinear numerical example 162-64
- 3.3.2 Additional numerical examples64-67
- 3.3.3 Two-bar truss67-69
- 3.3.4 Speed Reducer69-71
- 3.3.5 Compression Spring71-74
- 3.4 Conclusion74-76
- Chapter 4 Advanced Robust Optimization Algorithm with a Single-looped Structure76-106
- 4.1 Introduction76-79
- 4.2 Utopian Solution to QPs Subject to Box Constraints79-86
- 4.2.1 Convex maximization (or concave minimization) problem81-83
- 4.2.2 Concave maximization (or convex minimization) problem83-84
- 4.2.3 Indefinite problem84-86
- 4.3 Advanced Sequential Quadratic Programming Approach for Robust Optimization(A-SQP-RO)86-96
- 4.3.1 Approach to Solve the Objective Robustness Index86-89
- 4.3.2 Approach to Solve the Constraint Robustness Index89-92
- 4.3.3 Advanced SQP for Robust Optimization (A-SQP-RO)92-94
- 4.3.4 Discussion of A-SQP-RO94-96
- 4.4 Test Examples and Comparison of Results96-103
- 4.4.1 Nonlinear Numerical Example 196-100
- 4.4.2 Additional Numerical Examples100-101
- 4.4.3 Two-bar Truss101-102
- 4.4.4 Speed Reducer102-103
- 4.5 Conclusion103-106
- Chapter 5 A New Sequential Multi-Disciplinary Optimization Method Based on A NovelSequential Multi-Objective Optimization Approach106-140
- 5.1 Introduction106-110
- 5.2 Background110-111
- 5.2.1 Definition for the monotonicity of a function along a certain direction110-111
- 5.2.2 Definition for the data sets111
- 5.3 S-MOO and S-MDO Methodologies111-127
- 5.3.1 Illustrative observations112-118
- 5.3.2 A novel Sequential MOO approach118-119
- 5.3.3 Handling of coupling variables and generation of data set Y119-120
- 5.3.4 A novel sequential MDO approach120-123
- 5.3.5 Steps of S-MOO and S-MDO123-125
- 5.3.6 Discussion of the proposed method125-127
- 5.4 Examples and Comparison of Results127-139
- 5.4.1 Test examples for S-MOO127-134
- 5.4.2 Test examples for S-MDO134-139
- 5.5 Conclusion139-140
- Chapter 6 Multi-disciplinary Tolerance Design Optimization for Gas Engines140-168
- 6.1 Introduction140-146
- 6.2 Robust tolerance optimization of compression ratio for a typical gas engine146-149
- 6.3 Gaussian process modeling for a typical gas engine149-162
- 6.3.1 Gaussian process modeling for performances vs. compression ratio149-157
- 6.3.2 Gaussian process modeling for friction loss vs. tolerance157-162
- 6.4 Multi-disciplinary tolerance design optimization problem162-166
- 6.5 Conclusion166-168
- Chapter 7 Conclusions and Future Work168-176
- 7.1 Concluding Remarks168-172
- 7.1.1 Robust Optimization Based on Sequential Quadratic Programming169
- 7.1.2 Advanced Robust Optimization Algorithm of a Single-looped Structure169-170
- 7.1.3 A sequential MDO approach based on a novel sequential MOO approach .. 1517.1.4 Application of proposed approaches for engineering examples170-172
- 7.2 Main contributions172-173
- 7.3 Future research directions173-176
- 7.3.1 Representing uncertainty with additional statistical information173
- 7.3.2 Problems with discrete variables and discontinuous or non-differentiablefunctions as well as black box problems173-174
- 7.3.3 Algorithms development for robust MDO problems174-176
- Bibliography176-184
- Publications184
本文编号:864404
本文链接:https://www.wllwen.com/kejilunwen/dongligc/864404.html