大洋东西岸波高与周期的关系研究
发布时间:2017-12-31 10:11
本文关键词:大洋东西岸波高与周期的关系研究 出处:《中国海洋大学》2014年硕士论文 论文类型:学位论文
更多相关文章: ERA-40海浪资料 波龄 波高 周期
【摘要】:本文利用ECMWF ERA-40再分析波浪数据,来计算波龄,无因次波高以及无因次周期。把南北太平洋东西岸划分了4个区域,对连续3年的各区域的无因次波高与无因次周期进行计算,研究其波浪场无因次波高与无因次周期的关系,并比较大洋东西岸的区别,发现无因次波高与周期满足良好的相关性,不限于风浪情况。之后根据无因次周期与波龄的范围,将全部波浪数据划分为不同区间,按照Toba3/2指数率的形式计算各个区间的系数,以此研究其整体的变化规律与异同,之后结合上文对无因次周期与波龄的关系进行研究,,发现这两种划分方式的不同区间的范围有一定的重叠。之后结合上文的研究,对无因次周期与无因次波高的关系进行简化与整合,计算出了他们的关系,实质是将全部波浪数据划分为两段进行计算,给出了合理的解释,并比较其在大洋东西岸的区别。之后基于赵栋梁的3/5定律,对无因次波高与波龄的关系进行研究,采用上文类似的方式进行计算,可以发现计算结果有了一定的优化。之后比较不同的无因次化的方式的区别,发现在计算波龄与无因次量之间的关系时,应均采用10米风速或摩擦风速,这样计算才处于一个量级使得比较准确。文章的最后采用NDBC的浮标数据对上文的研究内容进行验证与研究,发现两者的计算结果有一定差异,对此分析其可能的原因:首先,数据来源本身导致的数据差异;其次数据来源带来的误差引起的。并且发现,虽然不同的数据来源计算的无因次波高与无因次周期的关系的数值不同,整体大致规律是一致的,并且采用同一来源的数据进行计算的结果都是一致的,具有普适性,并且可以确定,通过简单的换算,就可以将不同数据来源的计算结果联系到一起。
[Abstract]:In this paper, using the ECMWF ERA-40 reanalysis data to calculate the wave, wave age, dimensionless wave height and dimensionless period. The north and South Pacific coasts are divided into 4 regions, dimensionless wave height on each region for 3 consecutive years, and the dimensionless period for calculation, study on the relationship between dimensionless wave height and dimensionless cycle of the wave field and compare the ocean shore, what difference, found dimensionless wave height and period to meet the good correlation, not limited to waves. According to the range of dimensionless period and wave age, all wave data is divided into different intervals, each interval coefficient is calculated according to the Toba3 /2 index form, in order to study the changes of the overall the similarities and differences, after the combination of the above to study the relationship between the dimensionless period and wave age, found the two division of different ranges have some overlap. After the combination of the above. Study on the relationship between dimensionless cycle and dimensionless height of simplification and integration, the relationship between them is the essence of the calculation, all wave data is divided into two sections to calculate, given a reasonable explanation, and compare the difference between the East and west coasts. In the ocean after 3/5 Zhao Dongliang's law based on the study on the relationship between the dimensionless wave height and wave age, using the above similar way can be found to calculate, calculation results have certain optimization. After comparing the different dimensionless way difference, found in the relationship between the calculated wave age and dimensionless quantity, should adopt 10 m wind speed or friction speed, this calculation it is an order of magnitude to make more accurate. Finally, using NDBC buoy data on the above research content of verification and research, found that the calculation results have certain differences, it analyzes the possible reasons First, the data itself leads to differences in data sources; secondly bring errors caused by the data source. And it is found that although the numerical relationship between dimensionless wave height calculation of different data sources and the dimensionless cycle is different, is consistent with overall rule, and using the same source data were calculated and the results are consistent the universality, and can be determined by a simple conversion, can be calculated in different data sources the results together.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:P731.22
【参考文献】
相关期刊论文 前5条
1 刘斌;丁峗;管长龙;;A relationship between wave steepness and wave age for wind waves in deep water[J];Chinese Journal of Oceanology and Limnology;2007年01期
2 侯一筠,文圣常;三参量的风浪频谱[J];海洋与湖沼;1990年06期
3 蒋德才,张大错;海浪单过程的数值模拟[J];山东海洋学院学报;1981年01期
4 韩树宗,朱大勇,郭佩芳;太平洋波高分布及变化规律研究[J];青岛海洋大学学报(自然科学版);2003年06期
5 管长龙,张淑芳,孙建,孙群;深水风浪的风区指数律[J];中国海洋大学学报(自然科学版);2004年05期
本文编号:1359311
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1359311.html