回转梁结构及润滑材料对滑动式回转支承回转性能的影响
发布时间:2018-01-20 14:50
本文关键词: 起重设备 滑动式回转支承 润滑材料 轨压 均衡性 出处:《大连交通大学》2015年硕士论文 论文类型:学位论文
【摘要】:海洋工程设备在海洋工程的飞速发展中起着举足轻重的作用。浮吊是海洋工程中常用的工程船舶,海上平台的安装与拆卸、大型跨海大桥建设以及深水铺管作业等超大吨位的吊装都离不开大型浮吊。回转支承是起重设备重要的承载部件,是决定起重量、运转安全性与平稳性的关键因素之一,超大型全回转起重设备对回转支承承载性能有极高的要求。超大吨位起重设备常用的回转支承结构有台车式和滚子夹套式两种形式,二者有不同特点,限制起重能力。滑动式回转支承是一种新型的回转支承,结构紧凑,重心低,稳定性高,承载面积大,承载性能好,但有些问题需要研究,如滑道与轨道之间轨压均衡、回转工况滑动摩擦等问题。针对上述问题,本文以滑动式回转支承为研究对象,从影响其回转性能的相关力学问题入手,建立了滑动式回转支承的有限元模型,采用有限元接触理论以及瞬态动力学分析方法,分析了制约起重设备回转性能的主要因素,解决了滑动接触面轨压不均衡问题。主要做了以下研究工作:建立了滑动式回转支承滑道与固定轨道之间钢—钢接触以及在滑动面之间增加润滑材料垫层两种分析模型,并采用实体单元对滑道接触区域进行细化,以便较为准确的模拟滑动面上的接触状态。研究了回转梁结构对滑动面轨压分布的影响。通过对轨压分布曲线进行分析比较,提出了回转梁径向结构调整、端部结构扩展以及环向结构调整三类调整措施。研究了润滑材料对滑动式回转支承回转性能的影响。分析了静载、回转两种工况下滑动面上的轨压分布规律。分析了滑动面上的摩擦力分布规律,介绍了计算滑动式回转支承摩擦阻力矩的有限元瞬态动力学分析方法,比较了润滑材料与液体润滑两种润滑方式对回转性能的影响。研究结果表明:回转梁结构调整改善了滑动面径向与环向上的轨压分布均衡性,轨道端部扩展方案降低了滑道端部几何尖点造成的应力集中,整个滑动面上的轨压分布得到进一步均衡。润滑材料垫层刚度较弱,具有较好的变形协调能力。增加润滑材料垫层后,接触区域从筋板下方扩展到整个滑动面,轨压分布曲线基本接近,轨压分布得到较好的均衡。此外,由于润滑材料摩擦系数较小,摩擦阻力矩得到显著的降低,进一步提高了起重设备的回转性能。
[Abstract]:Offshore engineering equipment plays an important role in the rapid development of ocean engineering. Floating crane is a commonly used engineering ship, installation and demolition of offshore platform. The construction of large bridge across the sea and the lifting of large tonnage such as deep water pipe laying can not be separated from the large floating crane. The slewing bearing is an important bearing part of lifting equipment and the decision of lifting weight. One of the key factors for the safety and stability of the operation. There are very high requirements for the bearing capacity of the slewing bearing for the super-large full-rotary crane. There are two types of the slewing bearing structure in common use for super-large tonnage hoisting equipment, one is the type of trolley and the other is the type of roller clamping sleeve, and the two have different characteristics. Sliding slewing bearing is a new type of slewing bearing with compact structure, low center of gravity, high stability, large bearing area and good bearing capacity, but some problems need to be studied. For example, the rail pressure balance between the track and track, sliding friction in the rotary condition, and so on. In view of the above problems, this paper takes the sliding slewing bearing as the research object, starting with the related mechanical problems which affect the rotary performance of the sliding bearing. The finite element model of sliding slewing support is established, and the main factors restricting the rotary performance of hoisting equipment are analyzed by using finite element contact theory and transient dynamic analysis method. The unbalance of rail pressure on sliding contact surface is solved. The following research work is done:. Two analysis models of steel-steel contact between sliding slewing bearing slide track and fixed track and the addition of lubricating material cushion between sliding surface are established. The contact area of the sliding track is refined by solid element. In order to simulate the contact state on the sliding surface accurately, the influence of the structure of the rotating beam on the rail pressure distribution of the sliding surface is studied. Through the analysis and comparison of the rail pressure distribution curve, the radial structure adjustment of the rotating beam is proposed. The influence of lubricating materials on the rotary performance of sliding slewing bearing is studied, and the static load is analyzed. The distribution law of rail pressure on sliding surface under two conditions of rotation is analyzed. The law of friction force distribution on sliding surface is analyzed and the finite element transient dynamic analysis method for calculating friction resistance moment of sliding slewing bearing is introduced. The effects of lubricating materials and liquid lubrication on the rotary performance are compared. The results show that the adjustment of the structure of the rotating beam improves the equilibrium of the rail pressure distribution between the radial and annular direction of the sliding surface. The rail end expansion scheme reduces the stress concentration caused by the geometric tip of the end of the slide track, and the rail pressure distribution on the whole sliding surface is further balanced, and the stiffness of the lubricating material cushion is relatively weak. The contact area extends from the bottom of the stiffened plate to the whole sliding surface, the distribution curve of rail pressure is close, and the distribution of rail pressure is well balanced. Because the friction coefficient of lubricating material is small, the friction resistance moment is obviously reduced, which further improves the rotary performance of hoisting equipment.
【学位授予单位】:大连交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P75;TH703.3
【相似文献】
相关期刊论文 前4条
1 洪昌银;滚动轴承式回转支承计算公式的理论推导[J];重庆建筑工程学院学报;1980年01期
2 赵先琼;刘义伦;洪元;;回转支承构件牵引滚动接触应力解析[J];计算力学学报;2009年06期
3 董亚莲;余云霓;;单排四点接触球式回转支承椭圆滚道的计算[J];黑龙江科技信息;2011年09期
4 ;[J];;年期
相关会议论文 前5条
1 王兴东;刘源l,
本文编号:1448597
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1448597.html