中国近海叶绿素卫星遥感数据重构及其时空变化特征研究
本文选题:中国近海 切入点:叶绿素 出处:《国家海洋局第三海洋研究所》2016年硕士论文
【摘要】:海洋叶绿素浓度可作为衡量海洋浮游植物生物量和初级生产力的重要指示因子,因而经常用于海洋生态特征的分析和海洋资源环境的评估工作中。近年来,随着海洋卫星遥感技术的快速发展,卫星遥感资料凭借其大范围、长时间、高频率和成本低等优点,从而在海洋生态研究和动态监测应用中占据了重要地位。然而,由于天气、气候等各种因素的影响,卫星遥感数据存在有观测数据缺失等问题,在一定程度上阻碍了其应用。因此,采用科学合理的方法重构叶绿素卫星遥感数据成为当前应用研究的迫切需要。为此,本论文进一步发展了可应用于叶绿素卫星遥感数据重构的方法,完成了1998-2014年期间中国近海(东中国海和南中国海)叶绿素卫星遥感数据的重构工作,并据此分析了东中国海和南中国海叶绿素的时空变化特征及其与主要环境因子的关系,得到以下主要结果:(1)本文根据经典Data Interpolating Empirical Orthogonal Function(DINEOF)的重构方法,利用Empirical Mode Decomposition(EMD)技术可检测异常值(噪声)的特点,采用其可剔除原始数据中噪声的有效方法,并引入了基于数据同化思想的二次订正过程,形成的DINEOF-EMD的方法可对卫星遥感数据重构结果进一步优化。试验结果表明,本文发展的DINEOF-EMD方法能够较为成功地刻画中国近海海表叶绿素的时空变化特征,具有无需先验参数和运算速度快等优点,并且,重构精度比经典DINEOF方法提高了5%~10%等特点。(2)东中国海叶绿素的时空变化特征及其与环境因子的关系(1)叶绿素浓度的平均气候态:具有从近岸向远海呈带状分布以及从近岸向远海逐渐降低的特点。其中,长江口附近海域及渤海的叶绿素浓度较高,最高超过5.0mg/m3。(2)线性拟合结果表明,1998-2014年期间,叶绿素浓度上升了约0.136mg/m3,增加速率约为0.009mg/m3?a-1;其中,连云港沿岸、莱州湾、渤海湾北部以及黄海北部沿岸海域有增量大于2.0mg/m3的,而长江口附近海域则有明显相反的减少趋势。(3)叶绿素浓度在春季4月份达到2.974mg/m3的全年最高值,而在夏季7月份则达到2.560mg/m3的全年最低值。(4)叶绿素与主要海洋环境因子,如海表温度(SST)和海表盐度(SSS),未有简单一致的关系;并且,两者之间的关系随不同季节和海域有较大的变化。其中,叶绿素与SST呈现正相关的海域主要为春、秋季长江口附近海域以及夏、秋季济州岛附近海域,其他海域主要为负相关关系;叶绿素与SSS呈正相关的海域主要为夏、秋季的黄海中部及东北海域,其他海域为负相关。另外,冬季,叶绿素与SST和SSS的关系在不同海域则较为凌乱。(3)南中国海叶绿素的时空变化特征及其与环境因子的关系(1)叶绿素浓度的平均气候态特点:近岸海域高,离岸海域低,以及海盆中部岛礁周围海域相对较高的特点。(2)1998年-2014年,全海域平均叶绿素浓度总体呈略有减少的态势,下降了约0.006mg/m3,减少速率约为0.001mg/m3?a-1;其中,琼州海峡东侧相邻海域明显减少,大部分海域略有降低,而北部沿岸海域则呈相反的增加。(3)全年变化的最大值出现在冬季1月份,约为0.647mg/m3,而最低值约为0.461mg/m3,出现在春季4月份;此外,夏季7、8月份出现全年的第二个峰值,约为0.540mg/m3。(4)与东中国海的情况略有不同,叶绿素与海表温度(SST)主要呈现负相关关系,而与海表盐度(SSS)的关系则随着不同季节和海域有较大的变化。其中,夏季,大部分海域的叶绿素与SSS主要为负相关关系,其他季节则没有较为明显的一致关系。
[Abstract]:The chlorophyll concentration can be used as a factor measure marine phytoplankton biomass and an important indicator of primary productivity, which is often used in marine ecological characteristics of marine resources and environmental assessment work. In recent years, with the rapid development of marine satellite remote sensing technology, satellite remote sensing data with its large scale, long time, has the advantages of high frequency and cost so, in order to occupy an important position in the marine ecological research and dynamic monitoring applications. However, due to the weather, climate and other factors, satellite remote sensing data there are problems such as lack of data loss, hinders its application in a certain extent. Therefore, using scientific and reasonable method of satellite remote sensing data has become an urgent reconstruction of chlorophyll the current application research. Therefore, the further development of the method can be applied to satellite remote sensing chlorophyll data reconstruction, completed 1998-2 During the 014 years Chinese offshore (East Sea and South Sea China China) reconstruction of chlorophyll of satellite remote sensing data, and analyzes the temporal and spatial variations of the East Sea and South Sea China Chinese chlorophyll and its relationship with environmental factors, the main results are as follows: (1) the Data Interpolating Empirical Orthogonal Function according to the classic (DINEOF) reconstruction method, using Empirical Mode Decomposition (EMD) technique can detect outliers (noise) characteristics, using the noise elimination of the original data in the effective method, and the introduction of the two revision of the data assimilation method based on the idea of the formation of DINEOF-EMD can be further optimized for satellite remote sensing data reconstruction results. The test results show that the DINEOF-EMD method developed in this paper can successfully describe the temporal and spatial variations of sea surface chlorophyll China offshore, with no prior. The number of advantages, and fast operation and reconstruction, to improve the accuracy of 5%~10% features than the classical DINEOF method. (2) the temporal and spatial variation characteristics of chlorophyll China East Sea and its relationship with environmental factors (1) the average climatological chlorophyll concentration with zonal distribution and the characteristics of gradually decreasing from inshore to offshore from the shore to the open sea. The high chlorophyll concentration near the waters of the Yangtze River Estuary and Bohai, the highest of more than 5.0mg/m3. (2) linear regression results show that, during the 1998-2014 years, the chlorophyll concentration increased by about 0.136mg/m3, the increase rate is about 0.009mg/m3? A-1; the Lianyungang coast, the Gulf of Laizhou, the northern part of Bohai Bay and Northern the Yellow Sea coastal waters are incremental more than 2.0mg/m3, and the waters near the Yangtze River estuary is obviously opposite decreasing trend. (3) the chlorophyll concentration reached 2.974mg/m3 peak for the year in the spring of April, and in the summer of July The lowest annual 2.560mg/m3. (4) the chlorophyll and marine environmental factors such as sea surface temperature (SST) and sea surface salinity (SSS), no consistent relationship is simple; and the relationship between the two with the different seasons and sea change greatly. Among them, chlorophyll and SST are positively related to the main sea for spring, summer and autumn waters near the mouth of the Yangtze River, the waters near Jeju Island in autumn, other waters are negative correlation; chlorophyll SSS was positively correlated with the area mainly for the summer and fall in the the Yellow Sea central and northeast area, other areas are negatively correlated. In addition, in winter, the relationship between chlorophyll and SST and SSS in different area more messy. (3) the temporal and spatial variation characteristics of South Sea China chlorophyll and its relationship with environmental factors (1) characteristics of the Climatological Mean chlorophyll concentrations in coastal waters: high, low and middle basin offshore waters, the waters around the island The characteristics of relatively high. (2) 1998 -2014, the whole area average chlorophyll concentration showed a slight decrease trend, fell by about 0.006mg/m3, reduce the rate of about 0.001mg/m3? A-1; among them, the Qiongzhou Strait on the eastern side of the adjacent sea area was significantly reduced, most of the waters decreased slightly, while the northern coastal waters showed contrary (increase. 3) the maximum annual change in winter January, about 0.647mg/m3, while the minimum value is about 0.461mg/m3, in the spring of April; in addition, the summer 7,8 month throughout the year second peak, about 0.540mg/m3. (4) and the East Chinese sea is slightly different, chlorophyll and sea surface temperature (SST) mainly there is negative correlation between the sea surface salinity (SSS) and the relationship with the different seasons and sea change greatly. Among them, the summer, chlorophyll and SSS in most parts of the sea is the main negative correlation, the other seasons are not very bright A congruent relationship.
【学位授予单位】:国家海洋局第三海洋研究所
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P714.5;P715.7
【相似文献】
相关期刊论文 前10条
1 陈楚群,施平,毛庆文;南海海域叶绿素浓度分布特征的卫星遥感分析[J];热带海洋学报;2001年02期
2 邹亚荣;渤海叶绿素a时空分布特征分析[J];遥感信息;2004年03期
3 赵辉,齐义泉,王东晓,王文质;南海叶绿素浓度季节变化及空间分布特征研究[J];海洋学报(中文版);2005年04期
4 于X;陆殿梅;熊黑钢;;近7年来渤海海区冬季表层海水叶绿素浓度的遥感反演及其变化分析[J];遥感信息;2009年06期
5 马万栋;邢前国;张渊智;施平;刘亚龙;;水体红波段反射光谱对叶绿素浓度变化的响应[J];光谱学与光谱分析;2010年02期
6 田国良,倪晓东,宋福,赵蔚苓;用光谱数据估算水体叶绿素浓度[J];环境遥感;1988年01期
7 郑小慎;李桂菊;;渤海湾春季叶绿素浓度分布及环境要素的影响[J];海洋技术学报;2014年02期
8 杜聪;王世新;周艺;阎福礼;;运用分段法反演太湖水体的叶绿素a浓度[J];遥感信息;2009年01期
9 朱乾坤,冯旗,尹中林,郑亲波,潘德炉;利用海洋多波段扫描仪航空遥感海面叶绿素浓度的研究[J];台湾海峡;2001年04期
10 蒋刚;肖建;郑永康;宋昌林;;基于统计学习理论的海色遥感叶绿素浓度反演方法[J];中国海洋大学学报(自然科学版);2006年04期
相关会议论文 前7条
1 赵辉;唐丹玲;王素芬;;南海西北部夏季叶绿素浓度的分布特征及其对海洋环境的响应[A];中国海洋学会2005年学术年会论文汇编[C];2005年
2 焦全军;张霞;卫征;陈良富;张兵;;基于叶片光谱的森林叶绿素浓度反演研究[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年
3 包颖;田庆久;;太湖叶绿素a浓度遥感空间尺度关系研究[A];第十七届中国遥感大会摘要集[C];2010年
4 谭俊磊;马明国;宋怡;黄广辉;;基于SLC模型和CHRIS数据的LAI、Cab和fCover反演[A];遥感定量反演算法研讨会摘要集[C];2010年
5 毛志华;黄海清;;CMODIS资料提取叶绿素a浓度的方法研究[A];第六届成像光谱技术与应用研讨会文集[C];2006年
6 鲁韦坤;谢国清;;MODIS监测滇池叶绿素a分布的遥感影像融合研究[A];中国气象学会2008年年会卫星遥感应用技术与处理方法分会场论文集[C];2008年
7 荀尚培;詹万志;范伟;;MODIS巢湖水体叶绿素a浓度监测研究[A];中国气象学会2006年年会“卫星遥感技术进展及应用”分会场论文集[C];2006年
相关博士学位论文 前2条
1 郑龙江;光纤式海藻叶绿素a浓度的荧光测量理论与实验研究[D];燕山大学;2002年
2 李渊;基于数据同化的太湖叶绿素浓度遥感估算[D];南京师范大学;2014年
相关硕士学位论文 前10条
1 马骅;高浊度长江河口水色三要素的光学特征及其对TSM反演的影响[D];华东师范大学;2015年
2 张海东;基于MERIS数据的内陆湖泊叶绿素a浓度反演研究[D];华中师范大学;2016年
3 郭海峡;中国近海叶绿素卫星遥感数据重构及其时空变化特征研究[D];国家海洋局第三海洋研究所;2016年
4 刘斌;一类水域中从海面反射比反演叶绿素浓度垂直分布初探[D];中国海洋大学;2009年
5 刘广鹏;长江口及邻近海域叶绿素时空变化及影响机制[D];华东师范大学;2014年
6 吕云峰;水中叶绿素二向性与偏振反射光谱特性的对比研究[D];东北师范大学;2007年
7 张彦U,
本文编号:1676991
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1676991.html