当前位置:主页 > 科技论文 > 海洋学论文 >

基于OMAP平台的深海照相系统研制

发布时间:2018-06-02 10:07

  本文选题:深海照相 + MIPI ; 参考:《杭州电子科技大学》2015年硕士论文


【摘要】:随着全球人口的不断膨胀和有限资源的逐渐消耗,人类日益增加的资源需求与陆地上可开采资源有限的矛盾日益突出。而占据地球表面积71%的海洋是资源丰富的宝库,不仅孕育了种类繁多的生物资源,而且蕴藏了丰富的矿产资源。进入21世纪以来,科技的高速发展,人类对资源勘探的脚步已经从陆地迈向矿产资源更加丰富的海洋领域。水下拍摄是海洋勘探中勘探海底矿产资源的一种重要的手段,能够充当“眼睛”来直观地观察到水下的光影图像信息。而深海照相机是一种用于在海底和在水中摄取地质、生物以及海水流动态的专门的照相机。现如今国内外的深海相机产品种类很多,性能各有不同,功能用途也不一,如AXSUB公司的水下摄像机Ax SEE57,Kongsberg公司的水下高清照相机oe14-408等。但这些水下相机的功能单一,摄像机不支持高清拍照,照相机不支持远端图像预览,造成深海照相设备在水下获取的图像数据信息大部分都是没有研究意义的。本论文主要研究一种基于OMAP平台上提供实时远端图像预览功能的CMOS水下相机系统。其主要内容如下:1.系统总结归纳了关于深海相机的国内外发展现状以及当前深海相机的特点,概述了本文的研究内容和主要工作,并对相关原理进行了阐述。2.分析了深海照相系统的组成,包括水下照明设计和水下图像采集系统设计。对水下照明部分的设计包括前端耐压玻璃透镜的设计和水下光源选择以及照明方式的选择。对于水下图像采集系统部分,采用嵌入式Linux操作系统为软件运行平台,以ARM内核处理器OMAP4460为硬件平台核心,另外采用MIPI CSI2a接口作为成像部分与图像处理控制部分的传输接口,采用TCP传输协议传输图像数据来实现远端图像预览,进而实现水下图像采集系统整体功能。3.针对系统的功能对系统的硬件平台进行模块化设计,主要分成水下成像部分和图像处理控制部分。水下成像部分主要包括图像传感器以及其接口模块和电源模块设计。图像处理控制部分包括MIPI CSI2接口图像采集模块、以太网模块、存储模块等。另外针对系统的水下照明部分进行了闪光灯驱动的硬件设计。4.针对软件运行平台的系统软件层次结构,将整体软件分为图像传感器驱动和图像采集应用程序两部分。描述了整个系统的软件开发流程,阐述了整个系统的工作流程,并详细说明了图像采集部分和数据传输部分。5.针对水下的抗压和密封性问题,研究了水下密封结构和深海环境下的抗压结构。考虑到电子器件的大小,设计了深海抗压舱体的整体结构和密封结构。测试结果表明本论文研究的基于OMAP平台的深海照相系统可以实现实时远端图像显示并可以通过控制快门进行拍照保存,达到设计要求。
[Abstract]:With the continuous expansion of global population and the gradual consumption of limited resources, the contradiction between the increasing demand of human resources and the limited resources on land is becoming increasingly prominent. The ocean, which occupies 71% of the earth's surface area, is rich in resources, which not only breeds a wide variety of biological resources, but also contains rich mineral resources. Since the 21st century, with the rapid development of science and technology, the pace of human exploration for resources has moved from land to mineral resources more abundant marine field. Underwater photography is an important means to explore seabed mineral resources in ocean exploration. It can act as an "eye" to directly observe the image information of underwater light and shadow. Deep-sea cameras are specialized cameras for capturing geological, biological, and sea-water flows at the bottom and in water. Nowadays, there are many kinds of deep-sea cameras at home and abroad, such as AXSUB underwater camera Ax SEE57, Kongsberg underwater high-definition camera oe14-408 and so on. But the function of these underwater cameras is single, the camera does not support high-definition photography, the camera does not support remote image preview, so most of the image data information acquired by deep-sea camera under water is meaningless. This paper mainly studies a CMOS underwater camera system based on OMAP platform which provides real-time remote image preview function. Its main content is as follows: 1. This paper systematically summarizes the development of deep-sea cameras at home and abroad and the characteristics of deep-sea cameras at present, summarizes the research contents and main work of this paper, and expounds the related principles. The composition of deep-sea photographic system is analyzed, including underwater illumination design and underwater image acquisition system design. The design of underwater lighting includes the design of front-end pressure-resistant glass lens, the choice of underwater light source and the choice of lighting mode. For the underwater image acquisition system, the embedded Linux operating system is used as the software running platform, the ARM kernel processor OMAP4460 as the hardware platform core, and the MIPI CSI2a interface as the transmission interface between the imaging part and the image processing control part. The remote image preview is realized by using TCP protocol to transmit image data, and the whole function of underwater image acquisition system is realized. 3. According to the function of the system, the hardware platform is modularized, which is divided into underwater imaging part and image processing control part. Underwater imaging mainly includes image sensor, its interface module and power module design. Image processing control part includes MIPI CSI2 interface image acquisition module, Ethernet module, storage module and so on. In addition, the hardware design of flash drive for the underwater lighting part of the system. 4. According to the software hierarchy of the software platform, the whole software is divided into two parts: image sensor driver and image acquisition application. The software development flow of the whole system is described, the work flow of the whole system is expounded, and the image acquisition part and data transmission part. 5 are described in detail. Aiming at the problem of underwater pressure resistance and sealing, the underwater seal structure and the deep sea structure are studied. Considering the size of electronic devices, the whole structure and sealing structure of deep-sea compression cabin are designed. The test results show that the deep-sea camera system based on OMAP platform in this paper can realize real-time remote image display and can be photographed and saved by controlling shutter to meet the design requirements.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P715.5

【参考文献】

相关期刊论文 前2条

1 刘敬彪;刘洋;盛庆华;;基于同轴电缆的能源与数据信息混合传输技术中数据耦合器的设计与实现[J];热带海洋学报;2009年04期

2 杨文鹤;我国海洋技术现状与发展[J];世界科技研究与发展;1998年04期



本文编号:1968371

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/haiyang/1968371.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4dc31***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com