渤海三维斜压潮汐潮流的模型研究
本文选题:渤海 + 潮汐潮流 ; 参考:《上海海洋大学》2016年硕士论文
【摘要】:本文基于普林斯顿海洋动力模式(POM),用数值模拟的方法研究了三维斜压状态下渤海潮汐和潮流的相关特征,在天文分潮模拟结果验证的基础上进一步探讨了渤海的浅水分潮和潮能耗散等内容,这对于深刻认识渤海潮汐潮流的主要特征具有重要的理论意义和应用价值。本文模型采用Arakawa C正交网格,以经纬线划分网格,研究区域渤海网格精度设置为1/30°,经向和纬向网格数分别为116和139,垂直方向采用sigma坐标,设置10层。本文首先模拟了一个月的潮汐潮流,通过调和分析得到4个主要天文分潮的振幅和迟角,对比11个站点四个主要分潮的观测值可以发现,计算误差值有正有负,说明模拟结果不存在系统误差。进一步计算4个主要分潮振幅和迟角的均方根误差得到:M2分潮振幅和迟角均方根误差分别为11.82cm,10.43°;S2分潮振幅和迟角均方根误差分别为5.23cm,12.74°;K1分潮振幅和迟角均方根误差分别为6.40cm,9.63°;O1分潮振幅和迟角均方根误差分别为4.27cm,9.64°。结合4个分潮的同潮图可以发现,模拟的结果与观测吻合。至于误差存在的原因主要有两种可能:(1)本研究使用了较新的水深数据,与较早的观测结果进行比较可能存在匹配上的问题;(2)观测站点基本都在岸边,而本文采用的正交网格在岸线附近会存在盲点,插值的结果也可能造成误差。另外,模拟所得M2分潮在秦皇岛外海处及黄河口附近的无潮点相对远离岸边,可能是导致M2分潮均方根误差相对其它分潮略大的原因之一。本文模型结果还显示:渤海大部分海域为不正规半日潮型,渤海海峡及龙口东北部海域为正规半日潮型,半日分潮无潮点附近部分海域表现出全日潮类型。渤海最大可能潮差整体分布趋势为近岸海域潮差相对较大,约为3m;而渤海中部海域潮差相对较小,约为2m。这与M2分潮的振幅分布趋势一致,因为M2分潮在渤海占主导地位,振幅的强弱直接决定了潮差的大小。对比海洋水文图集给出的潮差分布,本研究的计算结果比较准确,进一步验证了本文模型计算渤海潮汐结果的可靠性。模型结果同时显示:渤海大部分海域表现为半日潮流类型,只有渤海海峡东南部海域及庙岛列岛海域表现为不正规全日潮流,烟台养马岛为中心扩散的小部分海域表现为正规全日潮流。最大可能潮流流速分布为老铁山水道及其附近海域、渤海湾及老黄河口附近海域均为较强潮流区,最大可能潮流流速超过150cm/s,大部分海域最大可能潮流流速均超过100cm/s。对三个海湾进行对比,辽东湾最大可能潮流流速相对较大,渤海湾次之,莱州湾较小。此结果与其他学者的研究及海洋图集的结果进行对比,进一步说明了本文模型计算渤海潮流结果的可靠性。在模型结果验证的基础上进一步探讨了渤海海域M4,MS4和M6 3个浅水分潮,发现渤海M4和MS4潮波传播特征类似,均存在5个潮波系统,其中4个为逆时针旋转,1个为顺时针旋转,与前人的研究成果比较一致。此外,根据浅水分潮和产生浅水分潮的源分潮的关系式推算可得到MS4分潮的振幅和迟角,与直接通过调和分析得到的MS4分潮的振幅和迟角进行对比,结果也比较吻合。针对M6分潮在渤海的传播特征进行分析,发现:本海域存在7个M6分潮无潮点,其中4个为逆时针旋转,3个为顺时针旋转。计算结果还发现:3个浅水分潮都是在近岸浅水海域振幅相对较大,这显然与浅水分潮的产生机制密切相关。最后探讨了渤海四个分潮的潮能通量,其分布的共同特征为:辽东湾、莱州湾湾顶、及渤海海峡的东南部海域潮能通量量级非常小,均小于0.1kw/m,这与渤海中部海域、渤海湾及渤海海峡入口处,均大于10kw/m的潮能通量相比几乎可以忽略,且与渤海4个分潮流的特征有极大关系,往复流与旋转流对此分布有直接影响。同时,底边界的潮能耗散分布显示,半日分潮M2的底边界耗散值的大小比S2、K1分潮大一个量级左右,比O1分潮大两个量级左右。半日分潮M2与S2均在辽东湾、渤海湾耗散较大,M2约为10-1w/m2,S2约为10-2w/m2,在半日分潮无潮点附近老黄河口处尤为明显,在莱州湾耗散相对较小;全日分潮K1与O1在渤海中部、渤海海峡附近以及老铁山一带海域耗散较大,K1约为10-2w/m2,O1约为10-3w/m2,而在辽东湾、莱州湾及渤海湾的耗散相对较小。最终发现潮能耗散的大小与潮流流速的大小呈正相关关系。
[Abstract]:Based on the Princeton ocean dynamic model (POM), this paper studies the correlation characteristics of tidal and tidal currents in Bohai under three dimensional baroclinic state by numerical simulation. Based on the verification of the results of the astronomical tidal simulation, it further discusses the content of shallow water and tidal energy dissipation in Bohai, which is the main characteristic of the profound understanding of the tidal currents in Bohai. The model is of important theoretical significance and application value. This model uses Arakawa C orthogonal grid to divide grid with longitude and latitude. The grid precision of Bohai is set to 1/30 degrees, the number of meridional and zonal grid is 116 and 139 respectively, and sigma coordinates are used in vertical direction to set 10 layers. And analyze the amplitude and late angle of 4 major astronomical tides, and compare the observation values of four main tides at the 11 sites. The calculated error values are positive and negative, indicating that the simulation results do not have systematic errors. Further calculation of the root mean square error of the 4 main tidal amplitude and late angle is obtained: the M2 tidal amplitude and the late angle mean square root error respectively The error of 11.82cm, 10.43 degree, S2 tidal amplitude and late angle mean square root error are 5.23cm, 12.74 degree respectively, K1 tidal amplitude and late angle mean root error are 6.40cm, 9.63 degrees respectively, O1 tidal amplitude and late angle mean root error are 4.27cm, 9.64 degrees respectively. The simulation results are consistent with the observation. As for the original error, the original error exists. There are two main possibilities: (1) the new water depth data is used in this study, and the matching problems may exist in comparison with the earlier observation results. (2) the observation sites are basically on the shore, and the orthogonal grids in this paper will have blind spots near the shore line, and the results of the interpolation may also cause errors. In addition, the simulated M2 tide is in the same way. The non tidal points near the Qinhuangdao and the Huanghe Estuary are relatively far away from the shore, which may be one of the reasons that cause the root error of the M2 tides to be relatively large. The results of this model also show that most of the sea areas in Bohai are irregular semidiurnal, the Bohai Strait and the northeastern Longkou sea are the regular semidiurnal tide type, and the half day tide is no tide. The largest possible tidal range in the nearby sea area shows the largest possible tidal range in Bohai. The tidal range in the coastal waters is relatively large, about 3M, while the tidal range in the central Bohai is relatively small, about 2M., which is in accordance with the amplitude distribution trend of the M2 tide, because the M2 tide is dominant in Bohai, and the intensity of the amplitude determines the tidal range directly. Comparing the tidal distribution given by the oceanographic hydrological atlas, the results of this study are more accurate, and the reliability of the model calculation of Bohai tidal results is further verified. The results of the model show that most of the sea areas in Bohai are semi daily, only the southeast of Bohai sea gorge and the sea area of the Temple Island are not shown. The regular all day tidal current, the small part of the small sea area in the center of Yantai culture island is regular all day tidal current. The largest possible tidal current velocity distribution is the old iron mountain channel and its nearby sea area, the Bohai Bay and the old Huanghe Estuary are all strong tidal current areas, the maximum possible tidal flow velocity exceeds 150cm/s, the largest possible tidal current velocity in most sea area The three Bay is compared with 100cm/s.. The largest possible tidal flow velocity in Liaodong Bay is relatively large, the Bohai Bay is second and the Laizhou Bay is smaller. The results are compared with those of other scholars and the results of the ocean atlas, which further illustrates the reliability of the model calculation of the tidal current results in Bohai. 3 shallow water tides in Bohai sea area M4, MS4 and M6 are discussed. It is found that the tidal wave propagation characteristics of Bohai M4 and MS4 are similar, and there are 5 tidal wave systems, of which 4 are revolving counterclockwise and 1 are clockwise, which are in accordance with the previous research results. In addition, the relationship between the shallow water tide and the source tide of shallow water separation can be calculated to get M The amplitude and late angle of the S4 tide are compared with the amplitude and late angle of the MS4 tides obtained directly through harmonic analysis, and the results are also consistent. According to the analysis of the propagation characteristics of the M6 tide in Bohai, it is found that there are 7 M6 tide free tides in this sea area, of which 4 are revolving clockwise and 3 are clockwise. The calculation results also found 3 The shallow water tide is relatively large in the near shore shallow waters, which is obviously related to the mechanism of shallow water distribution. Finally, the tidal energy flux of the four sub tides in Bohai is discussed. The common characteristics of the tidal energy distribution are: Liaodong Bay, the top of the Gulf of Laizhou Bay, and the ocean tidal energy flux in the southeast of the Bohai Strait are very small, which are less than 0.1kw/m. The entrance of the central Bohai sea, the Bohai Bay and the Bohai Strait is almost negligible compared with the tidal energy flux of 10kw/m, and has a great relationship with the characteristics of the 4 sub currents in Bohai. The reciprocating and rotating flow has a direct impact on this distribution. At the same time, the dissipation distribution of the tidal energy in the bottom boundary shows that the dissipation value of the bottom boundary of the semidiurnal M2 is more than that of S. 2, the K1 tide is about one order of magnitude, which is about two orders of magnitude larger than that of the O1 tide. The semidiurnal tide M2 and S2 are both in Liaodong Bay, Bohai Bay is dissipative, M2 is 10-1w/m2, S2 is 10-2w/m2, especially in the old Yellow River Estuary near the half diurnal tide no tide point, and the dissipation is relatively small in the Gulf of Laizhou; all day tide K1 and O1 are near the central Bohai and Bohai Strait. The dissipation of the sea area in the area of the old iron mountain area is larger, K1 is about 10-2w/m2, and O1 is about 10-3w/m2, while in Liaodong Bay, the dissipation of Laizhou Bay and Bohai Bay is relatively small. Finally, the size of tidal energy dissipation is positively correlated with the size of tidal current.
【学位授予单位】:上海海洋大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P731.23
【相似文献】
相关期刊论文 前10条
1 杨支中,沙文钰,朱首贤,李岩;湛江近海全日分潮的数值模拟[J];解放军理工大学学报(自然科学版);2004年05期
2 楼悦安;宋志尧;孔俊;程晨;徐福敏;;浅水分潮对海岸地下水波动影响初步研究[J];科学技术与工程;2013年20期
3 张锦文,陈福年,赵绪才;中国和日本沿海交点分潮和太阳三分之一年分潮的分布特征及对海平面周期性变化的影响[J];海洋通报;1993年03期
4 张衡,朱建荣,吴辉;东海黄海渤海8个主要分潮的数值模拟[J];华东师范大学学报(自然科学版);2005年03期
5 W.D.福莱斯特 ,陆国平;潮汐分潮的直接推导[J];海洋预报;1991年02期
6 龚俊,陆国平;不完整水位观测资料的一种特殊处理方法[J];海洋测绘;1994年02期
7 楼悦安;宋志尧;孔俊;程晨;徐福敏;;浅水分潮对海岸潮致地下水波动特征的影响[J];海洋工程;2013年06期
8 陈海军;姜绍材;王飞;;ADCIRC模式在渤海M2分潮模拟中的应用研究[J];海洋预报;2011年04期
9 吴乃华;中国沿岸的半日辐射潮[J];海洋学报(中文版);1991年06期
10 许金殿,曾刚;大亚湾冬季海流波动的分析[J];台湾海峡;1991年01期
相关会议论文 前4条
1 王永刚;魏泽勋;连展;方国洪;王新怡;;MITgcm模式在渤海M2分潮模拟中的应用[A];“海洋动力过程与天气、气候变化”联合学术年会论文摘要集[C];2009年
2 王勇智;江文胜;;小波重构分潮及风对潮波的影响[A];中国海洋湖沼学会水文气象分会、中国海洋湖沼学会潮汐及海平面专业委员会、中国海洋湖沼学会计算海洋物理专业委员会、山东(暨青岛市)海洋湖沼学会2005年学术研讨会论文摘要集[C];2005年
3 朱玉荣;;末次盛冰期以来渤、黄、东海陆架M_2分潮能流率演变过程模拟研究[A];第八届全国海岸河口学术研讨会暨海岸河口理事会议论文摘要集[C];2004年
4 朱建荣;王彪;林唐宇;;长江河口潮汐特征[A];辽宁省气象局、丹东市气象局、中国海洋湖沼学会气象分会、中国海洋湖沼学会潮汐海平面专业委员会、中国海洋湖沼学会计算物理专业委员会、山东(暨青岛市)海洋湖沼学会2011年联合学术研讨会论文摘要集[C];2011年
相关硕士学位论文 前3条
1 康鸿轩;渤海三维斜压潮汐潮流的模型研究[D];上海海洋大学;2016年
2 张娜;渤海潮汐预报及流场特性分析[D];天津大学;2007年
3 李希彬;东海大堤对湛江湾水动力环境影响的研究[D];中国海洋大学;2008年
,本文编号:1999983
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1999983.html