当前位置:主页 > 科技论文 > 海洋学论文 >

黄东海沉积物中还原无机硫的形态特征及影响因素研究

发布时间:2018-07-16 07:48
【摘要】:陆架海沉积物是有机质沉积和矿化的重要场所,也是早期成岩过程中能量转化和物质循环的重要载体。在有机质的早期成岩过程中,硫酸盐还原作用极为重要。据估计,硫酸盐还原对有机质矿化的贡献高达50%。陆架沉积环境也是硫铁矿形成和埋藏的重要场所。硫和铁的早期成岩直接影响海洋沉积物中C、P以及微量元素的循环,具有重要的地球化学意义。另外,养殖结构的不同也会影响硫化物的分布。反之,当硫化物积累到一定程度时,也会对养殖环境产生危害。本论文通过对黄东海以及桑沟湾沉积物中还原无机硫的形态特征及影响因素进行研究,得出以下结论:1.黄海、东海以及桑沟湾沉积物中酸可挥发性硫(AVS)的含量范围分别为0.01-17.14 μmol/g,0.01-25.02μmol/g和0.20-12.56μmol/g。其垂直分布表现为表层含量较低,随深度的增加呈现先增加后降低的趋势,并在5-20 cm之间出现峰值。东海T10站的AVS含量极低,可能与砂质沉积有关。T02站的AVS含量随深度的增加而增加,并没有出现峰值,这可能是因为采样深度较浅所致。三个区域元素硫(ES)的含量范围分别为0.02-44.40 μmol/g,0.14-27.75 μmol/g和0.16-1.10 μmol/g。其在上层10 cm含量较低,之后随深度的增加而增加。桑沟湾ES的整体水平较低,特别是在湾口区。三个区域黄铁矿硫(pyrite-S)的含量范围分别为0.61-113.1μmol/g,0.61-93.95 μmol/g和0.57-51.52 μmol/g。大部分站位上层5 cm的pyrite-S含量较低,然后随深度的增加而增加。黄海、东海以及桑沟湾各站沉积物中pyrite-S含量占总还原无机硫(AVS+pyrite-S+ES)的比例分别为16.1-99.0%,22.0-97.7%和58.2-96.9%,其平均值分别为72.5%,64.7%和85.0%,是沉积物中还原无机硫的主要形态。桑沟湾邻近的LDH和Wetland站的AVS含量较高,分别为264.72和191.64 μmol/g,且这两个站的ES与pyrite-S之间存在明显的正相关性(r=0.84,p0.05;n=37),表明pyrite-S的形成是以多硫化物途径进行。2.黄海、东海以及桑沟湾大部分站位AVS/pyrite-S的比值小于0.3,反映了AVS可以有效转化为pyrite-S。东海的P01,T06,38以及35站的AVS/pyrite-S比值在30 cm和10 cm之间呈现连续增加的特征,指示了在此期间沉积环境向强还原环境或者向频繁发生的低氧或者厌氧环境的转变。而桑沟湾的ST1站(5 cm以下)和Wetland站由于缺乏ES,从而不利于AVS向pyrite-S的转化。3.黄海、东海以及桑沟湾沉积物中活性铁的含量范围分别为11.44-175.50μmol/g,14.98-260.71 μmol/g和17.79-148.26 μmol/g,其平均值分别为71.78μmol/g,100.38 μmol/g和56.46±21.26μmol/g大部分站位的活性铁含量高于黄铁矿铁(Fepy),且其黄铁矿化度(DOP)小于0.6,反映了活性铁含量不会限制黄铁矿的形成。表层沉积物的DOP较低(0.2),低于正常海洋沉积物,但活性铁的含量远高于黄铁矿铁(Fepy),并且在采样深度范围内硫酸盐含量没有明显亏损,表明黄铁矿形成的限制因素不是活性铁含量,而是硫化物,从本质上讲是活性有机质的量。虽然黄海的C02和A08站的活性铁含量较低,但pyrite-S的形成并没有受到活性铁含量的限制,说明这两个站的黄铁矿形成也受到硫化物含量的限制。A04站的活性铁含量随深度的增加下降幅度高达84.2%,在20cm以下,其DOP值高于0.65,反映了该站底层较低的活性铁含量会限制pyritc-S的形成。另外,与桑沟湾相邻的LDH以及Wetland站的活性铁含量范围为20.80-197.86 μmol/g,,其含量在上层15cm随深度的增加而下降,之后则呈现逐渐增加的趋势。LDH站的DOP随深度的增加而增加,并且从7 cm开始已高于0.65,表明该站黄铁矿的形成会受到活性铁含量的限制。这可能是因为该站底部较高的硫酸盐还原速率所致。4.黄海、东海以及桑沟湾沉积物孔隙水中的硫酸盐含量较高,随深度的增加没有明显的降低。与桑沟湾相邻的LDH和Wetland站的硫酸盐含量虽然较低,但没有限制硫酸盐还原。黄海、东海孔隙水硫酸盐的扩散通量范围分别为0.05-0.57 mmol/m2/d和0.10-0.48 mmol/m2/d,并且随离岸距离的增加呈现下降的趋势。东海孔隙水硫酸盐的扩散通量同样受硫酸盐还原速率的影响。黄海、东海沉积物的硫酸盐还原速率(SRR)范围分别为1.06-8.85μM/d和2.00-40.60μM/d,并随深度的增加呈现指数下降的趋势。另外,SRR随着TOC含量的增加而增加。黄海、东海沉积物上层28cm的硫酸盐还原的积分速率范围分别为0.36-0.94 mmol/m2/d和0.91-4.34mmol/m2/d,硫酸盐还原对有机质矿化的贡献分别为12.8-42.7%和36.8-60.2%,表明了硫酸盐还原是黄东海沉积物中有机质矿化的重要途径。桑沟湾沉积物的SRR为1.89 mmol/m2/d,其对有机质矿化的贡献为42.1%,Wetland站的SRR为3.22 mmol/m2/d,其对有机质矿化的贡献为20.7%。5.桑沟湾沉积物中的还原无机硫含量和近底层海水溶解氧呈现明显的负相关性,但与有机质含量呈现正相关性,且还原无机硫也受到了不同养殖类型的影响。扇贝单养区以及扇贝与海带混养区的有机质含量高于海带养殖区,导致了扇贝单养区以及扇贝与海带混养区的还原无机硫含量较高。与牡蛎单养区相比,扇贝与海带混养区较低的有机质及还原无机硫含量显示了混养模式的环境优越性。总之,多年的养殖并没有对桑沟湾的硫化物积累以及底栖环境产生明显的影响。
[Abstract]:The continental shelf sediments are an important place for the deposition and mineralization of organic matter and an important carrier of energy conversion and material circulation during early diagenesis. Sulfate reduction is very important in the early diagenesis of organic matter. It is estimated that the contribution of sulfate reduction to the mineralization of organic matter is higher than that of the 50%. shelf sedimentary environment as well as pyrite. The early diagenesis of sulfur and iron directly affects the circulation of C, P and trace elements in marine sediments, which has important geochemical significance. In addition, the difference in the structure of aquaculture will also affect the distribution of sulfide. Conversely, when sulphides accumulate to a certain range, the culture environment will also be harmful. After studying the morphological characteristics and influencing factors of the reduction of inorganic sulfur in the sediments of Huang Donghai and Sangou Bay, the following conclusions are drawn: 1. the content range of acid volatile sulfur (AVS) in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 0.01-17.14 mol/g, and the vertical distribution of 0.01-25.02 mu mol/g and 0.20-12.56 mu mol/g. is shown as the surface layer. The content of the.T02 station in the East China Sea is very low. The content of AVS in the East China Sea T10 station is very low, and the AVS content of the.T02 station in the sand deposit may increase with the increase of depth, and there is no peak value. This may be caused by the shallow mining depth. The content of the elemental sulfur (ES) in the 5-20 regions is probably contained. The range of quantity is 0.02-44.40 mu mol/g, 0.14-27.75 mu mol/g and 0.16-1.10 mu mol/g. are lower in the upper 10 cm, and then increase with the depth. The overall level of San Gou Bay ES is low, especially in the bay mouth area. The content range of pyrite sulphur (pyrite-S) in the three regions is divided into 0.61-113.1 um mol/g, 0.61-93.95 Muu The pyrite-S content of 5 cm on the upper level of.52 mu mol/g. is low, and then increases with the depth. The proportion of pyrite-S content in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 16.1-99.0%, 22.0-97.7% and 58.2-96.9%, respectively, 72.5%, 64.7% and 85%, respectively. The main forms of the reduction of inorganic sulfur. The AVS content of the LDH and Wetland stations adjacent to Sangou Bay is 264.72 and 191.64 mu mol/g, respectively, and there is a significant positive correlation between ES and pyrite-S at the two stations (r=0.84, P0.05; n=37), indicating that the formation of pyrite-S is based on the majority of sulfides in.2. the Yellow Sea, the East China Sea, and Sangou Bay. The ratio of the station AVS/pyrite-S is less than 0.3, reflecting that AVS can be effectively converted into P01 in the East China Sea, and the AVS/pyrite-S ratio of T06,38 and 35 stations increases continuously between 30 cm and 10 cm, indicating the transition from the sedimentary environment to the strong reduction environment or to the frequently occurring hypoxic or anaerobic environment during this period. The ST1 station (5 cm) and Wetland station in the Bay lack ES, which is unfavorable to the conversion of AVS to pyrite-S in.3. the Yellow Sea, and the content range of active iron in the sediments of the East China Sea and Sangou Bay is 11.44-175.50 u mol/g, 14.98-260.71, mol/g and 17.79-148.26 muon. The average value is 71.78 mu, 100.38 Mu and 56.46 + 21.26 micron. The content of active iron in most sites of l/g is higher than that of pyrite iron (Fepy), and its pyrite mineralization degree (DOP) is less than 0.6, which reflects that the content of active iron does not restrict the formation of pyrite. The DOP of the surface sediments is lower (0.2), lower than that of normal marine sediments, but the content of active iron is much higher than that of pyrite iron (Fepy), and sulphuric acid is in the range of sampling depth. There is no obvious loss of salt content, indicating that the limiting factor of pyrite formation is not the content of active iron, but the amount of active organic matter in essence. Although the content of active iron in the C02 and A08 stations in the Yellow Sea is low, the formation of pyrite-S is not limited by the content of active iron, indicating that the formation of pyrite in these two stations is also subject to the formation of pyrite. The content of sulfide content is limited to 84.2% of the active iron content of.A04 station with the increase of depth, which is below 20cm, and its DOP value is higher than 0.65. It shows that the low active iron content at the bottom of the station will limit the formation of pyritc-S. In addition, the content of active iron in LDH and Wetland station adjacent to Sangou Bay is 20.80-197.86 u mol/g. The amount of 15cm in the upper layer decreases with the increase of depth, and then the DOP of the.LDH station increases with the increase of depth, and is higher than 0.65 from 7 cm, indicating that the formation of pyrite at this station will be restricted by the content of active iron. This may be due to the high sulfate reduction rate at the bottom of the station, which is caused by.4. the Yellow Sea, east of the station. The sulphate content in the pore water of the sea and Sangou Bay is higher than the depth. The sulfate content of the LDH and Wetland stations adjacent to Sangou Bay is low, but the sulfate reduction is not limited. The diffusion flux of sulphate in the pore water of the East China Sea is 0.05-0.57 mmol/m2/d and 0.10-0.48 MMO, respectively. L/m2/d, and the increase of the distance from the shore presents a downward trend. The diffusion flux of sulfate in the pore water of the East China Sea is also affected by the rate of sulfate reduction. The sulphate reduction rate (SRR) of the sediments in the East China Sea is 1.06-8.85 M/d and 2.00-40.60 M/d respectively, and presents an exponential decline with the increase of the depth. In addition, SRR is followed by SRR. With the increase of TOC content, the integral rate range of sulfate reduction of 28cm in the upper layer of the East China Sea is 0.36-0.94 mmol/m2/d and 0.91-4.34mmol/m2/d respectively. The contribution of sulfate reduction to organic matter mineralization is 12.8-42.7% and 36.8-60.2% respectively, indicating that sulfate is also important for the mineralization of organic matter in the Huang Donghai sediments. The SRR of Sangou Bay is 1.89 mmol/m2/d, and its contribution to the mineralization of organic matter is 42.1% and the SRR of the Wetland station is 3.22 mmol/m2/d. The contribution of the sediment to the mineralization of organic matter is a significant negative correlation between the reduced inorganic sulfur content in the sediment of 20.7%.5. Sangou Bay and the dissolved oxygen in the near bottom sea water, but it has a positive correlation with the organic matter content. The organic matter in the scallop single breeding area and the scallop and the kelp mixed area is higher than that of the marine aquaculture area, which leads to the higher reduction inorganic sulfur content in the scallop single breeding area and the scallop and the Laminaria mixed zone. Compared with the oyster single breeding area, the lower organic matter in the scallop and the kelp mixed zone is lower. And the reduction of inorganic sulfur content showed the environmental superiority of the mixed culture model. In a word, years of aquaculture did not have a significant effect on the accumulation of sulfides and the benthic environment in Sangou Bay.
【学位授予单位】:中国海洋大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P736.41

【相似文献】

相关期刊论文 前10条

1 孙炳寅,经美德;废黄河口盐沼土硫酸盐还原速率的研究[J];应用生态学报;1990年03期

2 马忠友;邓盾;汪建飞;谢越;;一组混合菌群还原硫酸盐的特性[J];中国农学通报;2013年08期

3 曾景海;吴晓磊;赵桂芳;钱易;;油田回注水中硫酸盐还原原核生物的快速检测和群落结构分析[J];环境科学;2006年05期

4 尹希杰;周怀阳;杨群慧;孙治雷;;珠江口淇澳岛海岸带沉积物中硫酸盐还原和不同形态硫的分布[J];海洋学报(中文版);2010年03期

5 康宁,伦世仪;硫酸盐还原一甲烷化两相厌氧消化系统运行工艺条件的研究[J];工业微生物;1996年03期

6 徐慧纬;张旭;李立明;郑光洁;李广贺;;不同基质条件下透性处理对脱硫弧菌硫酸盐还原活性的影响[J];环境科学;2013年01期

7 高树兵;Thomas J.Lyimo;Arjan Pol;Huub J.M.Op den Camp;;坦桑尼亚姆托尼地区红树林沉积物中的硫酸盐还原和甲烷生成作用[J];AMBIO-人类环境杂志;2002年Z1期

8 施春华,颜佳新,韩欣;早期成岩作用过程中硫酸盐还原反应研究进展[J];广西地质;2001年01期

9 张文存;吴耀国;吉青杰;王卫;;硫酸盐还原条件下苯胺生物降解的研究[J];环境研究与监测;2005年01期

10 尹希杰;陈坚;郭莹莹;孙治雷;邵长伟;;九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J];海洋学报(中文版);2011年04期

相关会议论文 前4条

1 陈家辉;商U_;陈光浩;;以甲烷为单一碳源的脱氮及硫酸盐还原[A];2011中国环境科学学会学术年会论文集(第二卷)[C];2011年

2 丁海;姚素平;陈骏;;重金属离子对混合SRB菌群的硫酸盐还原速率抑制研究[A];中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C];2013年

3 田涛;张代钧;李玉莲;孙陶陶;何强;;重庆园博园龙景湖水体硫酸盐还原及氮化物和TOC的影响[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年

4 赵本良;仇荣亮;刘金芩;黄雄飞;李清飞;王诗忠;石宁;;一株硫酸盐还原细菌的筛选及其功能研究[A];第十次全国环境微生物学术研讨会论文摘要集[C];2007年

相关重要报纸文章 前2条

1 萧莲;在高温季节应适当补施磷肥和氮肥[N];东方城乡报;2010年

2 倪永华;铁管道腐蚀之谜揭开[N];科技日报;2004年

相关博士学位论文 前9条

1 陈明翔;Desulfovibrio sp. CMX还原烟气脱硫脱硝络合溶液过程特性研究[D];大连理工大学;2015年

2 徐熙俊;微氧碳氮硫共脱除工艺的运行效能及数学模拟[D];哈尔滨工业大学;2015年

3 远野;废水碳氮硫污染物共脱除工艺调拉与生物硫回收参数优化[D];哈尔滨工业大学;2015年

4 周杰民;嗜盐嗜碱微生物法烟气处理的基础研究[D];中国科学院研究生院(过程工程研究所);2015年

5 康绪明;黄东海沉积物中还原无机硫的形态特征及影响因素研究[D];中国海洋大学;2015年

6 赵阳国;生态因子对硫酸盐还原系统中微生物群落动态影响的表征[D];哈尔滨工业大学;2006年

7 冯颖;硫酸盐还原菌与Fe~0协同处理含重金属酸性废水的研究[D];天津大学;2004年

8 李巍;废水同步生物脱氮除硫特性与效能研究[D];哈尔滨工业大学;2008年

9 夏芳芳;垃圾生物覆盖土对填埋气中H_2S的净化作用及机理研究[D];浙江大学;2014年

相关硕士学位论文 前10条

1 徐岩;基于遗传神经网络的产酸—硫酸盐还原系统建模研究[D];哈尔滨理工大学;2007年

2 乔佳妮;水稻土硫酸盐还原作用对多氯联苯消减的影响研究[D];浙江大学;2014年

3 侯丹丹;硫酸盐还原相反应器研究[D];西安工程大学;2011年

4 张璐;胶州湾沉积物中硫酸盐还原和铁异化还原的影响因素研究[D];中国海洋大学;2014年

5 毕建培;硫酸盐还原与反硝化脱硫工艺耦合及碳氮硫去除效能研究[D];哈尔滨工业大学;2009年

6 唐红玲;微生物烟气脱硫系统中硫酸盐生物还原过程研究[D];江南大学;2008年

7 刘一威;不同工艺条件下硫酸盐还原反应器微生物群落动态分析[D];哈尔滨工业大学;2006年

8 桂冠;脱硫肠状菌的培养及还原硫酸盐的试验研究[D];武汉理工大学;2013年

9 张照韩;反硝化抑制硫酸盐还原菌活性试验研究[D];哈尔滨工程大学;2007年

10 李放;硫酸盐还原菌株(Desulfovibrio desulfuricans)去除酸性废水中重金属离子研究[D];合肥工业大学;2012年



本文编号:2125728

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/haiyang/2125728.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户543cd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com