黄东海沉积物中还原无机硫的形态特征及影响因素研究
[Abstract]:The continental shelf sediments are an important place for the deposition and mineralization of organic matter and an important carrier of energy conversion and material circulation during early diagenesis. Sulfate reduction is very important in the early diagenesis of organic matter. It is estimated that the contribution of sulfate reduction to the mineralization of organic matter is higher than that of the 50%. shelf sedimentary environment as well as pyrite. The early diagenesis of sulfur and iron directly affects the circulation of C, P and trace elements in marine sediments, which has important geochemical significance. In addition, the difference in the structure of aquaculture will also affect the distribution of sulfide. Conversely, when sulphides accumulate to a certain range, the culture environment will also be harmful. After studying the morphological characteristics and influencing factors of the reduction of inorganic sulfur in the sediments of Huang Donghai and Sangou Bay, the following conclusions are drawn: 1. the content range of acid volatile sulfur (AVS) in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 0.01-17.14 mol/g, and the vertical distribution of 0.01-25.02 mu mol/g and 0.20-12.56 mu mol/g. is shown as the surface layer. The content of the.T02 station in the East China Sea is very low. The content of AVS in the East China Sea T10 station is very low, and the AVS content of the.T02 station in the sand deposit may increase with the increase of depth, and there is no peak value. This may be caused by the shallow mining depth. The content of the elemental sulfur (ES) in the 5-20 regions is probably contained. The range of quantity is 0.02-44.40 mu mol/g, 0.14-27.75 mu mol/g and 0.16-1.10 mu mol/g. are lower in the upper 10 cm, and then increase with the depth. The overall level of San Gou Bay ES is low, especially in the bay mouth area. The content range of pyrite sulphur (pyrite-S) in the three regions is divided into 0.61-113.1 um mol/g, 0.61-93.95 Muu The pyrite-S content of 5 cm on the upper level of.52 mu mol/g. is low, and then increases with the depth. The proportion of pyrite-S content in the sediments of the Yellow Sea, the East China Sea and Sangou Bay is 16.1-99.0%, 22.0-97.7% and 58.2-96.9%, respectively, 72.5%, 64.7% and 85%, respectively. The main forms of the reduction of inorganic sulfur. The AVS content of the LDH and Wetland stations adjacent to Sangou Bay is 264.72 and 191.64 mu mol/g, respectively, and there is a significant positive correlation between ES and pyrite-S at the two stations (r=0.84, P0.05; n=37), indicating that the formation of pyrite-S is based on the majority of sulfides in.2. the Yellow Sea, the East China Sea, and Sangou Bay. The ratio of the station AVS/pyrite-S is less than 0.3, reflecting that AVS can be effectively converted into P01 in the East China Sea, and the AVS/pyrite-S ratio of T06,38 and 35 stations increases continuously between 30 cm and 10 cm, indicating the transition from the sedimentary environment to the strong reduction environment or to the frequently occurring hypoxic or anaerobic environment during this period. The ST1 station (5 cm) and Wetland station in the Bay lack ES, which is unfavorable to the conversion of AVS to pyrite-S in.3. the Yellow Sea, and the content range of active iron in the sediments of the East China Sea and Sangou Bay is 11.44-175.50 u mol/g, 14.98-260.71, mol/g and 17.79-148.26 muon. The average value is 71.78 mu, 100.38 Mu and 56.46 + 21.26 micron. The content of active iron in most sites of l/g is higher than that of pyrite iron (Fepy), and its pyrite mineralization degree (DOP) is less than 0.6, which reflects that the content of active iron does not restrict the formation of pyrite. The DOP of the surface sediments is lower (0.2), lower than that of normal marine sediments, but the content of active iron is much higher than that of pyrite iron (Fepy), and sulphuric acid is in the range of sampling depth. There is no obvious loss of salt content, indicating that the limiting factor of pyrite formation is not the content of active iron, but the amount of active organic matter in essence. Although the content of active iron in the C02 and A08 stations in the Yellow Sea is low, the formation of pyrite-S is not limited by the content of active iron, indicating that the formation of pyrite in these two stations is also subject to the formation of pyrite. The content of sulfide content is limited to 84.2% of the active iron content of.A04 station with the increase of depth, which is below 20cm, and its DOP value is higher than 0.65. It shows that the low active iron content at the bottom of the station will limit the formation of pyritc-S. In addition, the content of active iron in LDH and Wetland station adjacent to Sangou Bay is 20.80-197.86 u mol/g. The amount of 15cm in the upper layer decreases with the increase of depth, and then the DOP of the.LDH station increases with the increase of depth, and is higher than 0.65 from 7 cm, indicating that the formation of pyrite at this station will be restricted by the content of active iron. This may be due to the high sulfate reduction rate at the bottom of the station, which is caused by.4. the Yellow Sea, east of the station. The sulphate content in the pore water of the sea and Sangou Bay is higher than the depth. The sulfate content of the LDH and Wetland stations adjacent to Sangou Bay is low, but the sulfate reduction is not limited. The diffusion flux of sulphate in the pore water of the East China Sea is 0.05-0.57 mmol/m2/d and 0.10-0.48 MMO, respectively. L/m2/d, and the increase of the distance from the shore presents a downward trend. The diffusion flux of sulfate in the pore water of the East China Sea is also affected by the rate of sulfate reduction. The sulphate reduction rate (SRR) of the sediments in the East China Sea is 1.06-8.85 M/d and 2.00-40.60 M/d respectively, and presents an exponential decline with the increase of the depth. In addition, SRR is followed by SRR. With the increase of TOC content, the integral rate range of sulfate reduction of 28cm in the upper layer of the East China Sea is 0.36-0.94 mmol/m2/d and 0.91-4.34mmol/m2/d respectively. The contribution of sulfate reduction to organic matter mineralization is 12.8-42.7% and 36.8-60.2% respectively, indicating that sulfate is also important for the mineralization of organic matter in the Huang Donghai sediments. The SRR of Sangou Bay is 1.89 mmol/m2/d, and its contribution to the mineralization of organic matter is 42.1% and the SRR of the Wetland station is 3.22 mmol/m2/d. The contribution of the sediment to the mineralization of organic matter is a significant negative correlation between the reduced inorganic sulfur content in the sediment of 20.7%.5. Sangou Bay and the dissolved oxygen in the near bottom sea water, but it has a positive correlation with the organic matter content. The organic matter in the scallop single breeding area and the scallop and the kelp mixed area is higher than that of the marine aquaculture area, which leads to the higher reduction inorganic sulfur content in the scallop single breeding area and the scallop and the Laminaria mixed zone. Compared with the oyster single breeding area, the lower organic matter in the scallop and the kelp mixed zone is lower. And the reduction of inorganic sulfur content showed the environmental superiority of the mixed culture model. In a word, years of aquaculture did not have a significant effect on the accumulation of sulfides and the benthic environment in Sangou Bay.
【学位授予单位】:中国海洋大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P736.41
【相似文献】
相关期刊论文 前10条
1 孙炳寅,经美德;废黄河口盐沼土硫酸盐还原速率的研究[J];应用生态学报;1990年03期
2 马忠友;邓盾;汪建飞;谢越;;一组混合菌群还原硫酸盐的特性[J];中国农学通报;2013年08期
3 曾景海;吴晓磊;赵桂芳;钱易;;油田回注水中硫酸盐还原原核生物的快速检测和群落结构分析[J];环境科学;2006年05期
4 尹希杰;周怀阳;杨群慧;孙治雷;;珠江口淇澳岛海岸带沉积物中硫酸盐还原和不同形态硫的分布[J];海洋学报(中文版);2010年03期
5 康宁,伦世仪;硫酸盐还原一甲烷化两相厌氧消化系统运行工艺条件的研究[J];工业微生物;1996年03期
6 徐慧纬;张旭;李立明;郑光洁;李广贺;;不同基质条件下透性处理对脱硫弧菌硫酸盐还原活性的影响[J];环境科学;2013年01期
7 高树兵;Thomas J.Lyimo;Arjan Pol;Huub J.M.Op den Camp;;坦桑尼亚姆托尼地区红树林沉积物中的硫酸盐还原和甲烷生成作用[J];AMBIO-人类环境杂志;2002年Z1期
8 施春华,颜佳新,韩欣;早期成岩作用过程中硫酸盐还原反应研究进展[J];广西地质;2001年01期
9 张文存;吴耀国;吉青杰;王卫;;硫酸盐还原条件下苯胺生物降解的研究[J];环境研究与监测;2005年01期
10 尹希杰;陈坚;郭莹莹;孙治雷;邵长伟;;九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J];海洋学报(中文版);2011年04期
相关会议论文 前4条
1 陈家辉;商U_;陈光浩;;以甲烷为单一碳源的脱氮及硫酸盐还原[A];2011中国环境科学学会学术年会论文集(第二卷)[C];2011年
2 丁海;姚素平;陈骏;;重金属离子对混合SRB菌群的硫酸盐还原速率抑制研究[A];中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C];2013年
3 田涛;张代钧;李玉莲;孙陶陶;何强;;重庆园博园龙景湖水体硫酸盐还原及氮化物和TOC的影响[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
4 赵本良;仇荣亮;刘金芩;黄雄飞;李清飞;王诗忠;石宁;;一株硫酸盐还原细菌的筛选及其功能研究[A];第十次全国环境微生物学术研讨会论文摘要集[C];2007年
相关重要报纸文章 前2条
1 萧莲;在高温季节应适当补施磷肥和氮肥[N];东方城乡报;2010年
2 倪永华;铁管道腐蚀之谜揭开[N];科技日报;2004年
相关博士学位论文 前9条
1 陈明翔;Desulfovibrio sp. CMX还原烟气脱硫脱硝络合溶液过程特性研究[D];大连理工大学;2015年
2 徐熙俊;微氧碳氮硫共脱除工艺的运行效能及数学模拟[D];哈尔滨工业大学;2015年
3 远野;废水碳氮硫污染物共脱除工艺调拉与生物硫回收参数优化[D];哈尔滨工业大学;2015年
4 周杰民;嗜盐嗜碱微生物法烟气处理的基础研究[D];中国科学院研究生院(过程工程研究所);2015年
5 康绪明;黄东海沉积物中还原无机硫的形态特征及影响因素研究[D];中国海洋大学;2015年
6 赵阳国;生态因子对硫酸盐还原系统中微生物群落动态影响的表征[D];哈尔滨工业大学;2006年
7 冯颖;硫酸盐还原菌与Fe~0协同处理含重金属酸性废水的研究[D];天津大学;2004年
8 李巍;废水同步生物脱氮除硫特性与效能研究[D];哈尔滨工业大学;2008年
9 夏芳芳;垃圾生物覆盖土对填埋气中H_2S的净化作用及机理研究[D];浙江大学;2014年
相关硕士学位论文 前10条
1 徐岩;基于遗传神经网络的产酸—硫酸盐还原系统建模研究[D];哈尔滨理工大学;2007年
2 乔佳妮;水稻土硫酸盐还原作用对多氯联苯消减的影响研究[D];浙江大学;2014年
3 侯丹丹;硫酸盐还原相反应器研究[D];西安工程大学;2011年
4 张璐;胶州湾沉积物中硫酸盐还原和铁异化还原的影响因素研究[D];中国海洋大学;2014年
5 毕建培;硫酸盐还原与反硝化脱硫工艺耦合及碳氮硫去除效能研究[D];哈尔滨工业大学;2009年
6 唐红玲;微生物烟气脱硫系统中硫酸盐生物还原过程研究[D];江南大学;2008年
7 刘一威;不同工艺条件下硫酸盐还原反应器微生物群落动态分析[D];哈尔滨工业大学;2006年
8 桂冠;脱硫肠状菌的培养及还原硫酸盐的试验研究[D];武汉理工大学;2013年
9 张照韩;反硝化抑制硫酸盐还原菌活性试验研究[D];哈尔滨工程大学;2007年
10 李放;硫酸盐还原菌株(Desulfovibrio desulfuricans)去除酸性废水中重金属离子研究[D];合肥工业大学;2012年
本文编号:2125728
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2125728.html