当前位置:主页 > 科技论文 > 海洋学论文 >

双水翼联动捕获潮流能发电系统设计与水动力分析

发布时间:2018-07-21 14:04
【摘要】:为治理环境污染,近年来我国政府愈加重视对清洁可再生能源的开发与利用。潮流能作为海洋能的一种,对于我国具有巨大的开发价值。本文中研究了一种采用双水翼联动振荡方式的捕获潮流能发电系统,为未来设计和开发潮流发电装置提供可靠的理论支持。水翼的振荡运动可分解为垂直方向的升沉运动与绕俯仰轴的俯仰运动。双水翼联动系统不仅可以将水翼捕获的水能转化为发电机的机械能,双水翼系统的联动作用使发电系统具有良好的自维持与自启动性能。为了研究双水翼联动系统的性能,本文做了以下研究工作:提出了双水翼联动捕获潮流能发电系统,并介绍了该系统的基本工作原理与水翼捕能的基本概念,基于CFD技术探讨了水翼水动力性能,根据分析结果选择翼型为NACA0018,折算频率为0.14、俯仰角为75°作为双水翼联动捕获潮流能发电系统设计的基础参数。基于Theodoersen理论建立了大攻角振荡水翼水动力性能数学计算模型,并在Simulink平台上设计仿真模型,基于该模型预测了 NACA0018水翼的水动力特性,并将结果与基于Fluent软件的数值仿真模型预测结果进行对比。对比结果显示,大攻角振荡水翼水动力性能数学计算模型可以获得相近与数值仿真模型的预测结果,可用于潮流发电液压系统的实时计算水动力系数与反馈控制。根据双水翼联动捕获潮流能发电系统原理设计了液压传动系统,在AMESim软件中构建液压系统模型,并通过数据接口与Simulink平台构建了联合仿真模型。利用联合模型研究了升降液压缸内径对水翼捕能与液压系统的影响,通过施加扰动来研究双水翼联动系统的自维持性能。当发电系统捕能功率为2kW,振荡周期T=2s,弦长与升沉运动幅值为0.5m,对于升降液压缸内径为25mm、30mm与35mm三组模型,内径越小,系统捕能效率、传动效率越高。D=30mm模型可获得28.73%捕能效率与69.83%传动效率;对水翼振荡过程施加持续时间为半个周期和一个周期,幅值为最大升力的扰动力,结果显示在正扰动与负扰动下,双水翼联动系统均能在3个周期后恢复正常振荡运动。
[Abstract]:In order to control environmental pollution, our government has paid more and more attention to the development and utilization of clean and renewable energy in recent years. As a kind of ocean energy, tidal current energy has great development value for our country. In this paper, a kind of capture power generation system with two hydrofoil linkage oscillations is studied, which provides reliable theoretical support for the design and development of power flow generator in the future. The oscillatory motion of hydrofoil can be divided into vertical heave motion and pitching motion around pitching axis. The hydrofoil linkage system can not only convert the hydrodynamic energy captured by the hydrofoil into the mechanical energy of the generator, but also make the power generation system have good self-sustaining and self-starting performance. In order to study the performance of the dual hydrofoil linkage system, the following research work is done in this paper: a dual hydrofoil coupled capture power generation system is proposed, and the basic working principle and the basic concept of the hydrofoil energy capture system are introduced. The hydrodynamic performance of hydrofoil is discussed based on CFD technology. According to the analysis results, the airfoil is selected as NACA0018, the conversion frequency is 0.14 and the pitch angle is 75 掳as the basic parameters for the design of the combined capture tidal current generation system with double hydrofoil. Based on Theodoersen theory, a mathematical model of hydrodynamic performance of hydrofoil with large angle of attack is established, and a simulation model is designed on Simulink platform. Based on the model, the hydrodynamic characteristics of hydrofoil NACA0018 are predicted. The results are compared with the prediction results of the numerical simulation model based on fluent software. The results show that the mathematical model of hydrodynamic performance of oscillating hydrofoil with large angle of attack can be used to calculate hydrodynamic coefficient and feedback control in real time. The hydraulic transmission system is designed according to the principle of the dual hydrofoil coupled capture power generation system. The hydraulic system model is constructed in the AMESim software, and the joint simulation model is constructed by the data interface and the Simulink platform. The joint model is used to study the influence of the inner diameter of the lifting hydraulic cylinder on the hydrofoil energy capture and hydraulic system, and the self-sustaining performance of the hydrofoil linkage system is studied by applying disturbance. When the power of generating system is 2 kW, the oscillation period is TX 2 s, the amplitude of chord length and heave motion is 0.5 m, for the three groups of models, the inner diameter of the lifting hydraulic cylinder is 25mm / 30mm and 35mm, the smaller the inner diameter, the more the system's energy capture efficiency. The higher the transmission efficiency is, the 28.73% energy capture efficiency and 69.83% transmission efficiency can be obtained, and the disturbance force with half period and one period is applied to the hydrofoil oscillation process, and the amplitude is the maximum lift force. The results show that under the positive and negative disturbances, the maximum lift force is applied to the hydrofoil oscillation process. The dual hydrofoil linkage system can return to normal oscillatory motion after 3 cycles.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P743.3

【相似文献】

相关期刊论文 前10条

1 徐娜;;极速水翼帆船[J];科学之友(上旬);2010年06期

2 张博;王国玉;黄彪;张敏弟;;栅中空化水翼的水动力特性[J];工程热物理学报;2009年06期

3 时素果;王国玉;黄彪;;绕栅中水翼空化流动的数值和实验研究[J];力学学报;2011年03期

4 何国毅;张星;张曙光;;摆动水翼绕流的数值研究[J];力学学报;2010年01期

5 郝宗睿;王乐勤;吴大转;;水翼非定常空化流场的数值模拟[J];浙江大学学报(工学版);2010年05期

6 张晓庆;王志东;张振山;;二维摆动水翼仿生推进水动力性能研究[J];水动力学研究与进展(A辑);2006年05期

7 张铭钧;刘晓白;储定慧;郭绍波;徐建安;;仿生水翼推进系统研制与实验研究[J];哈尔滨工程大学学报;2011年05期

8 杨孝忠,李百齐,朱炳泉;粘性流中的二维兴波水翼水动力特性研究[J];水动力学研究与进展(A辑);1998年02期

9 朱炳泉,李百齐,杨孝忠;二维兴波水翼水动力预报的涡分布法[J];水动力学研究与进展(A辑);1996年05期

10 何晓晖;李志刚;程建生;魏锋利;;粘性流中二维水翼局部空泡流的数值模拟[J];舰船科学技术;2007年01期

相关会议论文 前8条

1 倪阳;魏泽;邱耿耀;;二维振荡水翼推进效能数值模拟及分析[A];第二十五届全国水动力学研讨会暨第十二届全国水动力学学术会议文集(上册)[C];2013年

2 杨亮;苏玉民;秦再白;;黏性流场中二维摆动水翼的水动力分析[A];第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(下册)[C];2005年

3 王小川;郭栋;;新三峡高速旅游快巴新兴产业开发——“亲舟Ⅱ型”全通透三水翼观光游船研制[A];第十届全国内河船舶与航运技术学术会议论文集[C];2006年

4 任俊生;杨盐生;;对高速水翼双体船静水中运动的再研究[A];2002航海实用新技术论文集[C];2002年

5 胡子俊;吴乘胜;兰波;张华;;二维水翼推力特性CFD计算研究[A];第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源诞辰110周年纪念大会文集(下册)[C];2012年

6 陈建宏;吴炳承;;自由液面附近的二维水翼空化流场分析[A];第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集[C];2008年

7 赵伟国;张凌新;邵雪明;;三维水翼空化流场的数值模拟研究[A];第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集[C];2011年

8 翟树成;张军;赵峰;陆林章;;应用TR—PIV技术进行水翼尾流TILS测量分析[A];第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集[C];2011年

相关重要报纸文章 前4条

1 周永峰;周国东;梦系水翼驰远方[N];中国水运报;2002年

2 记者 桂雪琴;全通透三水翼游船从概念走向实船[N];中国船舶报;2006年

3 记者 李强 实习生 刘伟;福州台北间将开行水翼喷射船[N];福州日报;2009年

4 记者 蔡晓芸;无锡建造首批“三峡游”三水翼游船[N];华东旅游报;2006年

相关博士学位论文 前2条

1 储定慧;水翼法推进机理及仿生系统研究[D];哈尔滨工程大学;2009年

2 封培元;基于新型节能推进水翼的船舶耐波与操纵性能改进研究[D];上海交通大学;2014年

相关硕士学位论文 前10条

1 李键辉;双水翼耦合振荡捕获潮流能发电系统水动力性能研究[D];山东大学;2015年

2 刘富娟;仿生水翼推进的数值模拟和实验研究[D];哈尔滨工业大学;2015年

3 高远;弹性水翼非定常空化流激振动特性研究[D];北京理工大学;2016年

4 刘雪言;两栖火炮伸缩收放水翼技术研究[D];中北大学;2017年

5 黄凤跃;双水翼联动捕获潮流能发电系统设计与水动力分析[D];山东大学;2017年

6 刘海宾;平行式双水翼潮流能发电系统能量转换与动态特性研究[D];山东大学;2017年

7 祝文倩;基于有限元法的二维水翼性能预报[D];华中科技大学;2007年

8 闫娜;仿海龟水翼推进性能分析[D];哈尔滨工程大学;2012年

9 王俊芳;二维振荡水翼的水动力特性分析[D];中国海洋大学;2013年

10 祝美霞;水翼辅助推进船舶波浪中运动和增阻特性研究[D];上海交通大学;2014年



本文编号:2135767

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/haiyang/2135767.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4f469***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com