当前位置:主页 > 科技论文 > 海洋学论文 >

胶州湾沉积物—海水界面营养盐的迁移特征及其影响因素解析

发布时间:2018-07-27 11:09
【摘要】:本论文分别于2015年7月和2016年1月,乘“创新号”在胶州湾采集无扰动沉积柱和同站位底层海水,采用实验室培养法在原位的温度和溶氧条件下测定了胶州湾沉积物-海水界面硝酸盐(NO_3-N)、亚硝酸盐(NO_2-N)、铵盐(NH_4-N)、磷酸盐(PO_4-P)和硅酸盐(SiO_3-Si)的交换速率。在此基础上,进一步估算了夏、冬两季溶解无机营养盐在胶州湾沉积物-海水界面的交换通量及其对初级生产力的贡献,并探讨了相关环境因子对界面营养盐交换的影响。所得主要结果如下:1、胶州湾沉积物-海水界面SiO_3-Si均表现为从沉积物向水体迁移,而DIN和PO_4-P在不同季节的迁移方向并不一致,夏季胶州湾沉积物主要表现为水体DIN的源,冬季则整体表现为DIN和PO_4-P的汇。基于估算的胶州湾沉积物-海水界面营养盐的交换通量结果,夏季沉积物释放的N、P可提供维持初级生产力所需N、P的39.3%和14.1%,夏、冬季胶州湾沉积物释放的Si分别可提供维持初级生产力所需Si的15.6%和25.8%。胶州湾多数站位沉积物-海水界面无机氮主要以NO_3-N和NH_4-N的形式进行交换。在夏季,胶州湾多数站位沉积物表现为水体NO_3-N的源,冬季则表现为汇,交换速率为-714~1 560μmol/(m2·d)。NO_2-N在胶州湾沉积物-海水界面的交换速率普遍较低,夏季沉积物多表现为水体NO_2-N的源,冬季则表现为水体NO_2-N汇,交换速率为-117~941μmol/(m2·d)。夏季胶州湾沉积物表现为NH_4-N的源,而在冬季多数站位沉积物表现为水体NH_4-N的汇,交换速率在-1 334~26064μmol/(m2·d)范围内。夏季沉积物-海水界面PO_4-P的迁移方向并不一致,而冬季沉积物则表现为水体PO_4-P的汇,界面PO_4-P的交换速率为-128~861μmol/(m2·d)。夏、冬季胶州湾沉积物均表现为水体SiO_3-Si的源,交换速率为43~4 889μmol/(m2·d)。夏季胶州湾沉积物海水界面间NO_3-N、NO_2-N和NH_4-N的交换通量分别为2.35×108、6.35×107、1.34×109 mmol·d-1,能提供维持初级生产力所需N的39.3%,PO_4-P的交换通量为3.69×107 mmol·d-1,能提供维持初级生产力所需P的14.1%。而冬季沉积物则表现为水体NO_3-n、NO_2-n、NH_4n和PO_4-p的汇,其交换通量分别为-6.39×107、-1.49×107、-1.33×108、和-2.20×107mmol·d-1。夏、冬季胶州湾SiO_3-si的交换通量分别为6.50×108和1.32×108mmol·d-1,分别提供维持初级生产力所需si的15.6%和25.8%。2、夏季胶州湾沉积物中有机质的矿化作用剧烈,对沉积物中各种营养盐的交换均有较为显著的影响。同时,夏季NH_4n的交换还受底栖藻类的同化作用和吸附-解吸过程调控,而SiO_3-si的交换受到溶解和扩散过程调控。冬季沉积物中有机质的矿化作用较弱,底栖藻类的同化作用和扩散过程对沉积物-海水界面NO_3-n、PO_4-p和SiO_3-si的交换影响显著。另外,PO_4-p的交换还受有机质的吸附-解吸作用调控,而SiO_3-si的交换也受粘土矿物中硅的溶解过程调控。与夏季相似,矿化和吸附-解吸作用依旧是调控冬季胶州湾沉积物-海水界面NH_4n交换的主要过程。夏季胶州湾沉积物-海水界面NO_3-n的交换速率仅与表层沉积物的含水率、底层NO_3-n浓度和间隙水中NO_3-n浓度相关,而NO_2-n和NH_4-n的交换速率与底质参数、底层水体和间隙水体中对应营养盐的浓度均无显著相关,由主成分回归分析可知,影响夏季NO_3-n、NO_2-n和NH_4n交换的主要环境因子是表层沉积物的chla、toc、tn、含水率和底层无机氮浓度。由主要影响因子与营养盐交换速率的关系可推知沉积物中有机质的矿化作用和扩散可能是调控NO_3-n交换的主要过程。沉积物中有机质的矿化、底栖藻类的同化作用、沉积物的吸附-解吸和扩散可能是调控夏季胶州湾沉积物-海水界面NH_4n交换的主要过程。NO_2-n交换与界面NH_4n交换对环境因子变化的响应较为一致,因此NO_2-n的交换可能主要受硝化作用调控。PO_4-p的交换速率仅与表层沉积物的toc和c/n相关,而影响其交换的主要环境因子是表层沉积物的chla、toc和tp,有机质的矿化作用可能是影响夏季胶州湾沉积物-海水界面PO_4-p交换的主要过程。夏季胶州湾沉积物-海水界面SiO_3-si的交换速率与间隙水中SiO_3-si浓度、底层SiO_3-si浓度差、表层沉积物的toc、chla、bsi和含水率相关,表层沉积物的chla、toc、bsi、含水率和间隙水中SiO_3-si浓度是主要影响因子,溶解和扩散过程可能是调控夏季SiO_3-si交换的主要过程,而有机质的矿化能通过改变沉积物性质促进夏季底层SiO_3-Si的交换。冬季沉积物-海水界面NO_3-N的交换与底质参数、底层水体和间隙水体中NO_3-N浓度均无显著相关,主要影响因子是表层沉积物中的Chl a含量和间隙水中DIN浓度,沉积物-海水界面NO_3-N的交换受底栖藻类的同化作用和扩散共同调控。NO_2-N和NH_4-N的交换速率仅与表层沉积物中Chl a呈一定正相关,表层沉积物的Chl a、粘土含量和D50是影响NH_4-N交换的主要环境因子,底层NH_4-N的交换可能主要受海洋内源自生有机质的降解作用和吸附-解吸过程调控。与夏季一样,冬季胶州湾沉积物-海水界面NO_2-N交换与界面NH_4-N交换对环境因子变化的响应较为一致,因此NO_2-N的交换可能受硝化作用调控。PO_4-P的交换速率仅与表层TOC相关,主要影响因子有表层沉积物中的Chl a、TOC、含水率、底层PO_4-P浓度和间隙水PO_4-P浓度,有机质对PO_4-P的吸附-解吸作用、底栖生物的同化作用和扩散可能是调控冬季底层PO_4-P交换的主要过程。SiO_3-Si的交换与间隙水中SiO_3-Si浓度和表层沉积物中BSi含量相关,主要影响因子是表层沉积物中的Chl a含量和间隙水中SiO_3-Si浓度,主要受底栖藻类的同化作用、溶解和扩散过程调控。
[Abstract]:In July 2015 and January 2016, the undisturbed sediment column and the bottom water in the same station were collected in the Jiaozhou Bay by "innovation number". The laboratory culture method was used to determine the nitrate (NO_3-N), NO_2-N, NH_4-N, PO_4-P and phosphate (PO_4-P) in the sediment sea interface under the temperature and dissolved oxygen condition in situ. The exchange rate of silicate (SiO_3-Si). On this basis, the exchange fluxes of dissolved inorganic nutrients in the Jiaozhou Bay sediment sea interface and their contribution to primary productivity in the summer and winter two quarter were further estimated. The effects of related environmental factors on the exchange of nutrients in the interface were also discussed. The main results are as follows: 1, sediment sea in the Jiaozhou Bay. The water interface SiO_3-Si shows the migration from the sediments to the water body, while the migration direction of DIN and PO_4-P is not consistent in different seasons. The Jiaozhou Bay Sediments in the summer are mainly the source of the water body DIN, and in winter the overall performance is the sink of DIN and PO_4-P. Based on the estimated exchange fluxes of the nutrients in the sediment sea interface of the Jiaozhou Bay, Xia Jichen The product release of N, P can provide N for maintenance of primary productivity, 39.3% and 14.1% of P, summer, and winter Jiaozhou Bay sediment release Si, respectively, to provide 15.6% of Si for maintaining primary productivity and 25.8%. in most of the sediment in the Gulf of Jiaozhou Bay - inorganic nitrogen in the sea interface, mainly in the form of NO_3-N and NH_4-N. In summer, most of the Jiaozhou Bay The platform sediments are the source of water body NO_3-N, and the exchange rate is -714~1 560 mu mol/ (m2. D).NO_2-N in the sediment sea interface of Jiaozhou Bay, which is generally low in the winter. In summer, the sediment is mostly the source of water body NO_2-N, and the exchange rate is -117~941 micron mol/ (M2 d) in winter. The sediment of the state Bay is the source of NH_4-N, while most of the sediments in winter show a sink of NH_4-N in the water body. The exchange rate is within the range of -1 334~26064 mol/ (m2. D). In summer, the migration direction of the sediment sea interface PO_4-P is not consistent, while the sediment in winter is the sink of the water PO_4-P, and the exchange rate of the interface PO_4-P is -128~861. Mol/ (m2. D). In summer and winter, the sediments of the Jiaozhou Bay are all the source of SiO_3-Si in the water body, the exchange rate is 43~4 889 mol/ (m2. D). The exchange flux between the sediment and the seawater interface of the Jiaozhou Bay in summer is 2.35 * 108,6.35 * 109 The amount of 3.69 * 107 mmol. D-1 provides a 14.1%. for P for the maintenance of primary productivity, while the sediment in winter is shown as the sink of NO_3-n, NO_2-n, NH_4n and PO_4-p in water body, and the exchange flux is -6.39 * 107, -1.49 * 107, -1.33 * 108, and -2.20 *. The exchange flux of the Jiaozhou Bay in winter is 6.50 * 108 and 1.32 * respectively. D-1, 15.6% and 25.8%.2 for the maintenance of primary productivity, respectively, the mineralization of organic matter in the sediments of the Jiaozhou Bay in summer is intense, and it has a significant effect on the exchange of various nutrients in the sediments. At the same time, the exchange of NH_4n in summer is also regulated by the assimilation and desorption of benthic algae and the exchange of SiO_3-si. The mineralization of organic matter in the sediments is weak in winter. The assimilation and diffusion process of benthic algae have significant influence on the exchange of NO_3-n, PO_4-p and SiO_3-si in the sediment sea interface. In addition, the exchange of PO_4-p is also regulated by the adsorption desorption of organic matter, and the exchange of SiO_3-si is also affected by clay. The dissolution process of silicon in the mineral is similar to that in summer. Mineralization and desorption are still the main process to regulate the exchange of NH_4n in the sediment sea interface of Jiaozhou Bay in winter. The exchange rate of NO_3-n in the sediment sea interface in the summer of Jiaozhou Bay is only with the water content of the surface sediments, the underlying NO_3-n concentration and the NO_3-n concentration in the interstitial water. The exchange rate of NO_2-n and NH_4-n has no significant correlation with the substrate parameters, the concentration of the corresponding nutrients in the bottom water and the interstitial water. By the principal component regression analysis, the main environmental factors affecting the exchange of NO_3-n, NO_2-n and NH_4n in summer are the Chla of the surface sediments, TOC, TN, water content and the bottom inorganic nitrogen concentration. The relationship between factors and the exchange rate of nutrients can be deduced that the mineralization and diffusion of organic matter in the sediment may be the main process to regulate NO_3-n exchange. The mineralization of organic matter, the assimilation of benthic algae, adsorption desorption and diffusion of sediment may be the main control of the exchange of NH_4n in the sediment sea interface of Jiaozhou Bay in summer. The response of process.NO_2-n exchange and interface NH_4n exchange to the change of environmental factors is more consistent. Therefore, the exchange of NO_2-n may be mainly regulated by nitrification and the exchange rate of.PO_4-p is related only to the TOC and c/n of the surface sediments. The main environmental factors affecting the exchange are Chla, TOC and TP, and the mineralization of organic matter in the surface sediments. It may be the main process that affects the PO_4-p exchange in the sediment sea interface of the Jiaozhou Bay in summer. The exchange rate of the sediment sea interface SiO_3-si in the Summer Bay and the concentration of SiO_3-si in the interstitial water, the low SiO_3-si concentration at the bottom, the TOC, Chla, BSI and the water content of the surface sediments, the Chla of the surface sediments, TOC, BSI, water content and S in the interstitial water The concentration of iO_3-si is the main influencing factor, and the process of dissolution and diffusion may be the main process to regulate the exchange of SiO_3-si in summer, and the mineralization of organic matter can promote the exchange of SiO_3-Si at the bottom of the summer by changing the properties of the sediments. The exchange of NO_3-N in the sediment sea interface and the number of sediment, the concentration of NO_3-N in the bottom water and the interstitial water in winter There is no significant correlation. The main factors are the content of Chl a in the surface sediments and the concentration of DIN in the interstitial water. The exchange of NO_3-N in the sediment sea interface is controlled by the assimilation and diffusion of the benthic algae. The exchange rate of.NO_2-N and NH_4-N is only positively correlated with the Chl a in the surface sediments, and the Chl A and clay content in the surface sediments. And D50 is the main environmental factor affecting the NH_4-N exchange. The exchange of the underlying NH_4-N may be mainly controlled by the degradation and desorption of the endogenous marine endogenous organic matter and adsorption desorption process. As in the summer, the response of the Jiaozhou Bay sediment sea interface NO_2-N exchange and the interface NH_4-N exchange to the environmental factor changes in winter is more consistent, so NO_2-N The exchange rate of the exchange may be regulated by nitrification. The exchange rate of.PO_4-P is only related to the surface TOC. The main factors are Chl a, TOC, water content, PO_4-P concentration at the bottom and PO_4-P concentration in the interstitial water, the adsorption and desorption of organic matter to PO_4-P, and the assimilation and diffusion of benthic organisms may be the regulation of the low level PO_4-P intersection in winter. The exchange of.SiO_3-Si is related to the concentration of SiO_3-Si in the interstitial water and the BSi content in the surface sediments. The main factors are the Chl a content in the surface sediments and the SiO_3-Si concentration in the interstitial water, which are mainly controlled by the assimilation of the benthic algae and the process of dissolution and diffusion.
【学位授予单位】:中国科学院研究生院(海洋研究所)
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P734;P736.4

【相似文献】

相关期刊论文 前10条

1 张哲;王江涛;;胶州湾营养盐研究概述[J];海洋科学;2009年11期

2 杨瑾;;浅议胶州湾的污染现状与环湾保护[J];海洋开发与管理;2010年09期

3 沈启东;;介绍胶州湾几种海产动物标本的采集与固定方法[J];生物学通报;1954年06期

4 董金海,王广洁,丁正凰,宋光泽;在我国胶州湾内 首获成体抹香鲸[J];海洋科学;1977年01期

5 郑全安,孙元福,吴永森,于衍桂;胶州湾污染状况的航空遥感监测结果分析[J];海洋湖沼通报;1980年04期

6 张洪芹;;胶州湾砷的存在及分布[J];海洋湖沼通报;1982年03期

7 水化学研究组;;胶州湾海水中氮的地球化学(续)[J];海洋湖沼通报;1982年04期

8 王文海;王润玉;张书欣;;胶州湾的泥沙来源及其自然沉积速率[J];海岸工程;1982年01期

9 李善为;王永吉;张耆年;徐孝诗;;胶州湾的地貌发育[J];海洋通报;1986年01期

10 王文海;;胶州湾自然环境概述[J];海岸工程;1986年03期

相关会议论文 前10条

1 杨东方;高振会;孙培艳;秦洁;郭军辉;;胶州湾西南水域重金属砷的分布[A];中国环境科学学会2009年学术年会论文集(第一卷)[C];2009年

2 马彩华;游奎;彭斌;许志华;李康;赵焕利;袁伟;;胶州湾产业格局变动对环境的影响分析[A];2011中国环境科学学会学术年会论文集(第一卷)[C];2011年

3 杨东方;石强;张爱君;白红妍;陈晨;;胶州湾水域的石油分布[A];2012中国环境科学学会学术年会论文集(第二卷)[C];2012年

4 林晓红;王伟;林森;;水环境容量分析及保护对策研究——以胶州湾为例[A];多元与包容——2012中国城市规划年会论文集(09.城市生态规划)[C];2012年

5 沈志良;;胶州湾营养盐结构的长期变化及其对浮游植物组成的影响[A];中国海洋与湖沼学会甲壳动物学分会、中国动物学会、中国海洋与湖沼学会生态学分会2000年学术研讨会论文摘要集[C];2000年

6 周玉娟;杨桂朋;丁海兵;刘春颖;;低分子量有机酸对胶州湾海水酸化的影响[A];中国海洋湖沼学会第十次全国会员代表大会暨学术研讨会论文集[C];2012年

7 杨东方;朱四喜;王凤友;杨秀琴;吴云杰;;汞对胶州湾水域的影响——水域迁移过程[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年

8 陈聚法;陈碧鹃;李秋芬;过锋;崔毅;马绍赛;;胶州湾北部海域水环境质量现状及其动态变化[A];中国海洋湖沼学会水文气象分会、中国海洋湖沼学会潮汐及海平面专业委员会、中国海洋湖沼学会计算海洋物理专业委员会、山东(暨青岛市)海洋湖沼学会2005年学术研讨会论文摘要集[C];2005年

9 王广俊;;保护胶州湾生态环境[A];山东省海洋经济技术研究会2005年度学术研讨会论文集[C];2005年

10 颜天;谭志军;李钧;张永山;于仁诚;王云峰;周名江;;赤潮的生物毒性评价的初步研究——生物毒性测试方法在一次胶州湾赤潮中的应用[A];第七届全国海洋湖沼青年学者学术研讨会论文摘要集[C];2000年

相关重要报纸文章 前10条

1 刘洪滨 山东省海洋经济研究所所长、研究员;胶州湾发展需要新思维[N];中国水利报;2007年

2 梁学勇 周兆顺;胶州湾工业聚集区 满目新景入画来[N];青岛日报;2006年

3 沈俊霖;胶州湾隧道建设驶入快车道[N];青岛日报;2007年

4 李攻;青岛要把胶州湾变城区“内湖”[N];第一财经日报;2008年

5 本报记者 霍峰;环胶州湾高速公路(市区段)拓宽改造[N];青岛日报;2008年

6 记者 代桂云;让胶州湾承担起百年发展重任[N];人民政协报;2009年

7 崔峰 商晨 王晓昆 孙倩;蛟龙跃上胶州湾[N];人民日报;2011年

8 记者 马之恒;胶州湾跨海大桥如何建成的[N];北京科技报;2011年

9 驻鲁记者 柏彦雯 通讯员 贾国富;世界最长跨海大桥胶州湾大桥通过验收[N];中国水运报;2011年

10 本报记者 周建亮;胶州湾大桥免费通行[N];青岛日报;2012年

相关博士学位论文 前10条

1 史经昊;胶州湾演变对人类活动的响应[D];中国海洋大学;2010年

2 刘哲;胶州湾水体交换与营养盐收支过程数值模型研究[D];中国海洋大学;2004年

3 赵淑江;胶州湾生态系统主要生态因子的长期变化[D];中国科学院研究生院(海洋研究所);2002年

4 邹涛;夏季胶州湾入海污染物总量控制研究[D];中国海洋大学;2012年

5 李颖虹;胶州湾生态系统动态变化研究[D];中国科学院研究生院(海洋研究所);2012年

6 张学庆;近岸海域环境数学模型研究及其在胶州湾的应用[D];中国海洋大学;2006年

7 孙磊;胶州湾海岸带生态系统健康评价与预测研究[D];中国海洋大学;2008年

8 余云军;胶州湾流域与海岸带综合管理研究[D];中国海洋大学;2010年

9 张燕;海湾入海污染物总量控制方法与应用研究[D];中国海洋大学;2007年

10 闫菊;胶州湾海域海岸带综合管理研究[D];中国海洋大学;2003年

相关硕士学位论文 前10条

1 赵燕燕;新型溴代阻燃剂在胶州湾湿地污染状况及迁移转化的研究[D];青岛大学;2015年

2 董成仁;胶州湾滨海湿地CO_2通量及源/汇功能研究[D];青岛大学;2015年

3 赵慧敏;春季胶州湾海水甲烷氧化速率时空变化初步研究[D];中国海洋大学;2015年

4 董文华;镭同位素对胶州湾水体混合及海底地下水排放的示踪研究[D];中国海洋大学;2015年

5 王雪;胶州湾三维水动力数值模拟研究[D];中国海洋大学;2014年

6 汪雅露;胶州湾沉积物—海水界面营养盐的迁移特征及其影响因素解析[D];中国科学院研究生院(海洋研究所);2016年

7 赵瑾;环胶州湾河流对胶州湾水沙输送的数值模拟[D];中国海洋大学;2007年

8 徐晓达;胶州湾东部和青岛前海地质环境及污染状况的初步研究[D];中国海洋大学;2005年

9 白伟明;胶州湾工程地质环境特征研究[D];中国海洋大学;2005年

10 牟森;胶州湾岸线变化对动力环境的影响[D];中国海洋大学;2009年



本文编号:2147629

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/haiyang/2147629.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户85779***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com