胶州湾三维水动力数值模拟研究
[Abstract]:In this paper, a three-dimensional finite volume ocean model FVCOM with unstructured grid is used to establish a three-dimensional positive pressure high resolution numerical model for Jiaozhou Bay. Through the comparison of the observed and simulated data, the rationality of the model is verified. Based on the established model, the tidal currents in the Jiaozhou Bay are numerically simulated and the tracer test is carried out. The factors and characteristics of the water exchange in Jiaozhou Bay are examined. Based on the actual bridge length, the number of piers and the spatial distribution of the bridge pier and the diameter parameters of the pier in Jiaozhou Bay Bridge, the high resolution grid containing the bridge is generated, and the hydrodynamic characteristics of the bridge before and after the construction of the Jiaozhou Bay Bridge are compared. The main conclusions are as follows: (1) The tide, tidal current and residual current characteristics of Jiaozhou Bay are studied. The simulation results show that the tidal current is characterized by reciprocating flow. The residual current is subjected to complex topography, forming a multi vortex structure near the mouth of the bay. The value of Stokes drift is two orders of magnitude smaller than Euler's residual current, and Lagrange's residual current is basically the same as Eulerian residual current. (2) the flow product of the cross section is used. The results show that the maximum influence of the sea surface fluctuation on the tidal volume can be greater than 1%, which can not be ignored: the tidal volume of the tide period is 2-3 times that of the small tide period, the tidal volume is the lowest in spring, the second in winter and the higher in summer and autumn. The results are generally large, but the two methods of seasonal variation are basically the same. (3) the water exchange capacity and stability time of different subregions in Jiaozhou Bay are different, the water exchange ability of the west side of the bay is stronger, but the stability is relatively slow: the water exchange of the Bay mouth is stable and fast, but the quality point is easily captured by the vortex in northern Huangdao (Yu Liuwo) and water exchange. The capacity is low; the water exchange capacity of the northeast part of the bay is weak, and the water exchange is mainly through the coastal area of the east of the Bay and outside the bay. The stable time of the tracer particles is relatively short during the flood tide, and the stable time of the tracer particles is placed for a long time during the ebb tide. (4) after the establishment of the bridge, the bridge's barrier effect makes the tidal current very little near the bridge pier in the whole bay. The maximum increase of water level is 1.5cm, and the increase of the north side of the bridge is greater than that of the south side of the bridge. The north side of the bridge has the largest increase in the north-west and northeastern part. Similarly, the damping effect of the bridge reduces the water level in the bay. This change is mainly concentrated on the north side of the bridge (especially in the northwest and northeast). The bridge is built to make the bridge. The residual current in the vicinity of the bridge has no obvious influence on the size and structure of the four strong vortices in the bay mouth. In the west section of the bridge, the strength of the residual current in the north and south sides of the bridge has been strengthened; the residual current intensity of the middle section of the bridge is basically unchanged and the north side obviously decreases; the residual current intensity in the east section of the bridge is obviously enhanced and the north side decreases in Jiaozhou. The establishment of the bay bridge makes the tidal volume of the Jiaozhou Bay decrease in both the size and the average. (5) the influence of the cross sea bridge on the tidal current is mainly concentrated in the vicinity of the bridge pier. For the sea area near the Dagu river channel bridge, the flow field is basically unchanged after the bridge is passed through the bridge. After the bridge, the flow after the bridge is passed. The impact of the piers on the tide is obviously smaller than that of the bridge pier, that is, the influence of the pier on the tide is directly related to the size of the pier and the distance between the piers. The influence of the pier is a rectangular and asymmetrical circle. The influence of the bridge to the tide is directly related to the angle of the pier when the tide passes through the pier, and the tide must pass through a number of piers continuously, so the effect of the bridge on the tide is the result of the joint action of many piers. When the flow velocity is obviously increased and the velocity of the pier decreases after the bridge pier, the flow velocity decreases as a whole, so the velocity of the pier decreases again when the pier passes through the pier again. The flow velocity between the piers increases before the bridge, but decreases slightly than that before the bridge. The water exchange capacity of the bridge in the different regions of the bay is different, and the water exchange in the northwest of the bridge is different. The ability of water exchange in the sea area of the northeast of the bridge was strengthened, and the water exchange ability of the Bay Center and the bay mouth changed little. (6) the water temperature in the Jiaozhou Bay area has obvious seasonal difference, and basically changes with the solar radiation. The isotherm in the waters outside the bay of Jiaozhou Bay shows the north-east north-west direction and the sea temperature as a whole. The interannual variability is relatively small, and the isotherms in the Bay are mostly parallel to the isthmus, smaller in the middle of the Bay and the Bay, and larger in the coastal waters.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:P731.2
【相似文献】
相关期刊论文 前10条
1 张哲;王江涛;;胶州湾营养盐研究概述[J];海洋科学;2009年11期
2 杨瑾;;浅议胶州湾的污染现状与环湾保护[J];海洋开发与管理;2010年09期
3 沈启东;;介绍胶州湾几种海产动物标本的采集与固定方法[J];生物学通报;1954年06期
4 董金海,王广洁,丁正凰,宋光泽;在我国胶州湾内 首获成体抹香鲸[J];海洋科学;1977年01期
5 郑全安,孙元福,吴永森,于衍桂;胶州湾污染状况的航空遥感监测结果分析[J];海洋湖沼通报;1980年04期
6 张洪芹;;胶州湾砷的存在及分布[J];海洋湖沼通报;1982年03期
7 水化学研究组;;胶州湾海水中氮的地球化学(续)[J];海洋湖沼通报;1982年04期
8 王文海;王润玉;张书欣;;胶州湾的泥沙来源及其自然沉积速率[J];海岸工程;1982年01期
9 李善为;王永吉;张耆年;徐孝诗;;胶州湾的地貌发育[J];海洋通报;1986年01期
10 王文海;;胶州湾自然环境概述[J];海岸工程;1986年03期
相关会议论文 前10条
1 杨东方;高振会;孙培艳;秦洁;郭军辉;;胶州湾西南水域重金属砷的分布[A];中国环境科学学会2009年学术年会论文集(第一卷)[C];2009年
2 马彩华;游奎;彭斌;许志华;李康;赵焕利;袁伟;;胶州湾产业格局变动对环境的影响分析[A];2011中国环境科学学会学术年会论文集(第一卷)[C];2011年
3 杨东方;石强;张爱君;白红妍;陈晨;;胶州湾水域的石油分布[A];2012中国环境科学学会学术年会论文集(第二卷)[C];2012年
4 林晓红;王伟;林森;;水环境容量分析及保护对策研究——以胶州湾为例[A];多元与包容——2012中国城市规划年会论文集(09.城市生态规划)[C];2012年
5 沈志良;;胶州湾营养盐结构的长期变化及其对浮游植物组成的影响[A];中国海洋与湖沼学会甲壳动物学分会、中国动物学会、中国海洋与湖沼学会生态学分会2000年学术研讨会论文摘要集[C];2000年
6 周玉娟;杨桂朋;丁海兵;刘春颖;;低分子量有机酸对胶州湾海水酸化的影响[A];中国海洋湖沼学会第十次全国会员代表大会暨学术研讨会论文集[C];2012年
7 杨东方;朱四喜;王凤友;杨秀琴;吴云杰;;汞对胶州湾水域的影响——水域迁移过程[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
8 陈聚法;陈碧鹃;李秋芬;过锋;崔毅;马绍赛;;胶州湾北部海域水环境质量现状及其动态变化[A];中国海洋湖沼学会水文气象分会、中国海洋湖沼学会潮汐及海平面专业委员会、中国海洋湖沼学会计算海洋物理专业委员会、山东(暨青岛市)海洋湖沼学会2005年学术研讨会论文摘要集[C];2005年
9 王广俊;;保护胶州湾生态环境[A];山东省海洋经济技术研究会2005年度学术研讨会论文集[C];2005年
10 颜天;谭志军;李钧;张永山;于仁诚;王云峰;周名江;;赤潮的生物毒性评价的初步研究——生物毒性测试方法在一次胶州湾赤潮中的应用[A];第七届全国海洋湖沼青年学者学术研讨会论文摘要集[C];2000年
相关重要报纸文章 前10条
1 刘洪滨 山东省海洋经济研究所所长、研究员;胶州湾发展需要新思维[N];中国水利报;2007年
2 梁学勇 周兆顺;胶州湾工业聚集区 满目新景入画来[N];青岛日报;2006年
3 沈俊霖;胶州湾隧道建设驶入快车道[N];青岛日报;2007年
4 李攻;青岛要把胶州湾变城区“内湖”[N];第一财经日报;2008年
5 本报记者 霍峰;环胶州湾高速公路(市区段)拓宽改造[N];青岛日报;2008年
6 记者 代桂云;让胶州湾承担起百年发展重任[N];人民政协报;2009年
7 崔峰 商晨 王晓昆 孙倩;蛟龙跃上胶州湾[N];人民日报;2011年
8 记者 马之恒;胶州湾跨海大桥如何建成的[N];北京科技报;2011年
9 驻鲁记者 柏彦雯 通讯员 贾国富;世界最长跨海大桥胶州湾大桥通过验收[N];中国水运报;2011年
10 本报记者 周建亮;胶州湾大桥免费通行[N];青岛日报;2012年
相关博士学位论文 前10条
1 史经昊;胶州湾演变对人类活动的响应[D];中国海洋大学;2010年
2 刘哲;胶州湾水体交换与营养盐收支过程数值模型研究[D];中国海洋大学;2004年
3 赵淑江;胶州湾生态系统主要生态因子的长期变化[D];中国科学院研究生院(海洋研究所);2002年
4 邹涛;夏季胶州湾入海污染物总量控制研究[D];中国海洋大学;2012年
5 李颖虹;胶州湾生态系统动态变化研究[D];中国科学院研究生院(海洋研究所);2012年
6 张学庆;近岸海域环境数学模型研究及其在胶州湾的应用[D];中国海洋大学;2006年
7 孙磊;胶州湾海岸带生态系统健康评价与预测研究[D];中国海洋大学;2008年
8 余云军;胶州湾流域与海岸带综合管理研究[D];中国海洋大学;2010年
9 张燕;海湾入海污染物总量控制方法与应用研究[D];中国海洋大学;2007年
10 闫菊;胶州湾海域海岸带综合管理研究[D];中国海洋大学;2003年
相关硕士学位论文 前10条
1 赵燕燕;新型溴代阻燃剂在胶州湾湿地污染状况及迁移转化的研究[D];青岛大学;2015年
2 董成仁;胶州湾滨海湿地CO_2通量及源/汇功能研究[D];青岛大学;2015年
3 赵慧敏;春季胶州湾海水甲烷氧化速率时空变化初步研究[D];中国海洋大学;2015年
4 董文华;镭同位素对胶州湾水体混合及海底地下水排放的示踪研究[D];中国海洋大学;2015年
5 王雪;胶州湾三维水动力数值模拟研究[D];中国海洋大学;2014年
6 赵瑾;环胶州湾河流对胶州湾水沙输送的数值模拟[D];中国海洋大学;2007年
7 徐晓达;胶州湾东部和青岛前海地质环境及污染状况的初步研究[D];中国海洋大学;2005年
8 白伟明;胶州湾工程地质环境特征研究[D];中国海洋大学;2005年
9 牟森;胶州湾岸线变化对动力环境的影响[D];中国海洋大学;2009年
10 纪朝彬;胶州湾生态环境现状分析及治理对策研究[D];中国海洋大学;2010年
,本文编号:2161870
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2161870.html