集合调整Kalman滤波同化模块的建立及其在海洋和气候系统模式中的应用
[Abstract]:There are often large deviations between ocean model and climate system model in the actual application process. It is urgent to use more mature data assimilation method to effectively combine observation information in the numerical simulation process to obtain more reasonable simulation results or to improve the prediction accuracy by improving the initial value field. In data assimilation method, ensemble-adjusted Kalman filter (EAKF) assimilation method does not need perturbation observation, can fully retain the prior information of numerical model, and its calculation and storage requirements are relatively small. It is suitable for data assimilation of ocean and climate system models. The basic theory and related hypotheses are discussed. The serial implementation, parallel implementation, observation data processing and set sample processing of EAKF assimilation method are discussed. The EAKF assimilation module is established and then applied to the regional ocean model, the global ocean model and the air-sea coupling model. In order to compare and analyze the effect of regional ocean model data assimilation, three groups of numerical experiments were designed: control experiment (single mode operation, no data assimilation), aggregate free divergence experiment (aggregate operation, no data assimilation) and EAKF experiment (aggregate operation, no data assimilation). Assimilation experiment (collective operation, Argo data assimilation). The regional ocean model takes the initial field of different years as the initial field of different model samples in 2005, realizes the collective mode operation, carries out the collective free divergence experiment and EAKF assimilation experiment. The results of ensemble simulation show that the distribution of ensemble samples decreases in the first few months, but then stabilizes in a certain range. This method of constructing the initial field of ensemble is applied to the regional model. All the ensemble samples have certain divergence and can be used to carry out accurate ensemble filtering assimilation. The sample distribution is slightly smaller than that of the non-assimilated free-divergence experiment, but it still keeps a certain amount of value, which will have no adverse effect on the subsequent filtering assimilation process. As a result, all the experimental results were compared with SST, GTSPP temperature and salinity profiles and satellite altimeter data in detail. The error statistics showed that the error of the assimilation results was less than that of the satellite SST before assimilation, and the average reduction was about 10%. Compared with the GTSPP temperature and salinity profiles independent of Argo data, the error of the assimilation results was less than that of the satellite SST before assimilation. The results show that the temperature and salinity errors of the assimilated model are greatly reduced compared with those of the pre-assimilated model, and the maximum errors of relative control experiment and free divergence experiment are 85% and 80% respectively. In the global oceanic circulation model based on MOM4, EAKF assimilation of Argo buoy data in 2008 was carried out, and the results of four groups of Assimilation Experiments and control experiments (not assimilated) were compared and analyzed. The results show that the deviations of temperature (salinity) in the upper 400 m (500 m) water layer after assimilation of Argo data are significantly reduced, but these deviations increase in the deeper water layer; the deviations of SST in the first half of the year are significantly higher than those in the deeper water layer. In order to investigate the difference of the improvement effect of assimilation at different depths and different periods, three sensitivity experiments were designed. Two of them were used to analyze the sensitivity of different vertical disturbances: disturbance depth (experiment 2) and disturbance amplitude (experiment 3). In experiment 2, the disturbance of the whole water column was used, and the disturbance amplitude was still 1.0 C. The results show that the deviation of salinity decreases with the simulated temperature in the whole water body. In experiment 3, a small disturbance amplitude (0.1 C) is used, and the appropriate disturbance amplitude is also very important compared with experiment 2. In experiment 4, the set sample expansion is used, and the expansion coefficient is 5% obtained by a series of numerical experiments. Comparing with the three experiments, the assimilation performance of Experiment 4 has been greatly improved. Based on the above experimental results, we consider that all the layers of the model should be considered for the initial field perturbations: the appropriate amplitude of the perturbation plays an important role in EAKF assimilation; the selection of the optimal set of sample expansion coefficients helps to improve the effect of EAKF assimilation. The Earth System Model (FIO-ESM) of the First Institute of Oceanography, Jiahai Oceanic Administration, was used to construct a set of initial fields and to carry out EAKF Assimilation Experiments of satellite SST and SLA data. In this study, the assimilation of ocean model, atmospheric model, sea ice model, land surface model and ocean wave model was carried out using the assimilated data of climate system model. Results The climate reanalysis data from 1992 to 2013 were reconstructed and the reconstructed reanalysis data were evaluated as a whole. The data of ERA-Interim reanalysis data set, EN4 thermohaline reanalysis data set, GPCP precipitation data set, AVISO along-track observation of wave effective wave height were used in this study. The results show that the reconstructed reanalysis data can successfully reproduce the climatic characteristics of the upper ocean, atmospheric movement and water vapor distribution, sea ice changes, and wave climatic distribution during 1992-2013. Knowledge level
【学位授予单位】:中国海洋大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P73;P435
【相似文献】
相关期刊论文 前10条
1 张家宝;气候系统究竟包括哪“五圈”[J];新疆气象;2003年04期
2 ;合作与交流[J];Annual Report of CAMS;2003年00期
3 栗珂;气候系统性态行为复杂性的探索[J];气象科学;2004年01期
4 栗珂;郑小华;屈振江;;气候系统性态行为信息探索[J];大气科学研究与应用;2007年02期
5 苏京志;;气候与气候系统研究进展[J];Annual Report of CAMS;2009年00期
6 杨更生;气候系统理论述评[J];丝路学刊;1994年01期
7 曹鸿兴,,王永中;离散气候系统中的周期与混沌[J];应用气象学报;1995年03期
8 郑祖光,刘平,刘利红,刘式达;一个简化气候系统的非线性特征[J];气象学报;1997年05期
9 寿好纶;;南美洲的气候系统和结构[J];中学地理教学参考;1990年04期
10 ;气候系统[J];中国经济信息;2002年08期
相关会议论文 前10条
1 乐群;束炯;;多参数非线性零维气候系统的研究[A];地理教育与学科发展——中国地理学会2002年学术年会论文摘要集[C];2002年
2 俞永强;;气候系统模式与全球气候变化预测[A];新观点新学说学术沙龙文集6:未来几年气候变化研究向何处去[C];2007年
3 任国玉;;关于气候系统危险人为干扰的相关科学问题[A];中国气象学会2005年年会论文集[C];2005年
4 史学丽;王兰宁;;采用不同大气模式对气候系统模式中陆面变量的模拟效果分析[A];中国气象学会2006年年会“气候系统模式发展与应用”分会场论文集[C];2006年
5 吴统文;;中国气象局气候系统模式研究进展[A];第26届中国气象学会年会全球和区域气候模式及极端天气气候事件的模拟研究分会场论文集[C];2009年
6 严汾;蒙吉军;;贵州省清镇市近50年来气候系统的多时间尺度分析[A];中国地理学会2006年学术年会论文摘要集[C];2006年
7 翁衡毅;;气候系统对太阳活动非线性响应引起的年际和年代际变化[A];第七次全国动力气象学术会议论文摘要[C];2009年
8 吴统文;董文杰;宇如聪;罗勇;王兰宁;张芳;;气候系统模式BCC_CSM1.0.1简介[A];中国气象学会2007年年会气候学分会场论文集[C];2007年
9 张丽霞;周天军;吴波;包庆;;气候系统模式FGoALS_s1.1对热带降水年循环模态的模拟[A];第七次全国动力气象学术会议论文摘要[C];2009年
10 苏同华;薛峰;孙泓川;周广庆;;中国科学院气候系统模式CAS-ESM-C模拟的ENSO循环[A];第八次全国动力气象学术会议论文摘要[C];2013年
相关重要报纸文章 前10条
1 宇如聪;气候系统模式简介[N];中国气象报;2014年
2 李晔;点燃气候系统模式研发助推器[N];中国气象报;2003年
3 中国气象局预测减灾司 阮水根;积极向气候系统领域拓展的战略思考[N];中国气象报;2003年
4 记者赖敏 郑菲;气候系统模式发展研讨会举行[N];中国气象报;2009年
5 记者 郭起豪 实习记者 张倩;高分辨率气候系统模式研制项目启动[N];中国气象报;2010年
6 陈磊 郭战峰;气候系统模式发展研究启动[N];中国气象报;2003年
7 记者 林英;气候系统模式研究专家咨询委员会成立[N];光明日报;2004年
8 李丹 郭战峰;第三届气候系统与气候变化国际讲习班开班[N];中国气象报;2006年
9 记者 林英;我国加强气候系统综合观测能力[N];光明日报;2004年
10 记者 郭起豪 实习记者 张倩;第七届气候系统与气候变化国际讲习班开幕[N];中国气象报;2010年
相关博士学位论文 前1条
1 尹训强;集合调整Kalman滤波同化模块的建立及其在海洋和气候系统模式中的应用[D];中国海洋大学;2015年
相关硕士学位论文 前1条
1 董仕;太阳紫外线异常变化对气候系统影响的数值模拟[D];中国气象科学研究院;2015年
本文编号:2207275
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2207275.html