Argo剖面浮标数据异常检测方法研究
[Abstract]:Argo profile buoy is the only real-time method to obtain three-dimensional observational data from global upper ocean. The observed data reflect the distribution of ocean temperature and salt in three-dimensional ocean. It is very important to study ocean circulation and global climate change. The ocean analysis and forecast system provides the basis of data, and has very important application significance and scientific value. This paper takes the Argo profile buoy data as the breakthrough point of the marine big data information security research, aiming at the problem that the Argo profile buoy data is influenced by the uncertain factors such as environment, equipment and so on, which leads to the abnormal data. According to the characteristics of Argo profile buoy data, such as large amount of data, region, non-linear distribution, discrete and so on, an in-depth study on anomaly detection method of Argo profile buoy data is carried out in order to improve the accuracy of Argo profile buoy data. Reliability provides theoretical basis and technical means. In this paper, the training phase and anomaly detection phase of anomaly detection are analyzed and studied respectively. Firstly, in the training stage, aiming at the complicated format and huge data volume of the Argo profile buoy data file, a AMPC (information fusion algorithm for Argo profile base on MapReduce and Principal Curves) algorithm based on MapReduce technology for the generation of Argo main profile is proposed. In addition, the section information is classified by latitude and longitude to enhance the correlation between sections and highlight the regional characteristics of the section, and on the basis of K-principal curve theory, the algorithm uses MapReduce technology to improve the efficiency of execution effectively. The main section is generated by continuously adding fitting section points to reduce the amount of data stored in the anomaly detection phase, which provides reference for possible point exceptions, context exceptions, and set exceptions in the profile. Secondly, in the anomaly detection phase, the advantages of the anomaly detection method based on the "triple standard deviation" criterion and the anomaly detection method based on predictive model are drawn. An improved anomaly detection method based on adaptive anomaly threshold is designed, which combines the segmented "triple standard deviation" criterion and the prediction method of k-nearest neighbor profile and principal curve. In this method, the main section generated during the training stage is taken as a reference, and the deviation of the current section point to the main section and the influence of the variation trend of the profile with the depth on the anomaly detection are integrated, and the abnormal threshold values of each section point are calculated dynamically. Further improve the performance and detection effect of the anomaly detection method. The verification test shows that: through the verification of global Argo profile buoy data, the anomaly detection method based on the characteristics of Argo profile buoy data studied in this paper effectively combines historical profile data, and effectively avoids the one-sidedness of static threshold detection. It has good effect of anomaly detection, and the accuracy of anomaly detection is improved obviously.
【学位授予单位】:桂林电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P715.2;TP311.13
【相似文献】
相关期刊论文 前10条
1 黄丽超;陈国弟;;自动站雨量数据异常的处理方法[J];现代农业科技;2010年01期
2 朱石军;马广庆;赵帅;;延庆台五里营井气氡数据异常分析[J];四川地震;2013年04期
3 陈庆庆;张汉平;;自动站整点上传数据异常处理方法[J];陕西气象;2012年01期
4 黎锦雷;黄春莎;;一体化数据信息分析反馈[J];气象研究与应用;2013年04期
5 李鹏飞;;深层地温数据异常原因探讨[J];农业与技术;2012年10期
6 莫小梅;林展新;苏崇升;彭自强;;10cm地温数据异常分析及仪器故障排除[J];气象水文海洋仪器;2012年02期
7 刘岩;王宗海;王青利;;自动气象站数据异常或缺测的处理方法[J];现代农业科技;2011年18期
8 宋明明;尹雪梅;李秀娟;;自动站雷击后正点数据的处理[J];科技创新导报;2013年14期
9 陈明;樊新宇;;AMS-Ⅱ型自动气象观测系统降水数据异常情况的处理[J];气象水文海洋仪器;2011年04期
10 张立清;张洪卫;;自动气象站观测数据异常的检查方法[J];气象水文海洋仪器;2010年03期
相关会议论文 前6条
1 苏艳;胡少栋;胡映红;;对自动气象站数据异常原因及防范措施的探讨[A];第七届长三角气象科技论坛论文集[C];2010年
2 华连生;温华洋;徐光清;吴必文;汪腊宝;;“双套站”气温模拟评估[A];第28届中国气象学会年会——S1第四届气象综合探测技术研讨会[C];2011年
3 秦榕;井立红;何亚平;玛依努尔·阿不拉;侯玲红;;自动站净全辐射异常值的处理方法[A];第26届中国气象学会年会第三届气象综合探测技术研讨会分会场论文集[C];2009年
4 许嘉玲;王超球;赵秀英;;自动气象站数据异常的原因分析[A];2006年华南地区学术交流会论文集[C];2006年
5 陈璐;;北京地区自动气象站数据异常因素分析[A];第28届中国气象学会年会——S1第四届气象综合探测技术研讨会[C];2011年
6 陈静;张远;张青珍;王国安;邢用书;;新气象 新问题 新思路[A];第28届中国气象学会年会——S1第四届气象综合探测技术研讨会[C];2011年
相关重要报纸文章 前3条
1 东方证券首席经济学家 邵宇;三因素导致金融数据异常[N];第一财经日报;2014年
2 本报记者 宋菁;两项外贸数据异常[N];21世纪经济报道;2013年
3 本报记者 韩雪萌;结售汇数据异常 源于企业结汇动机减弱[N];金融时报;2014年
相关硕士学位论文 前1条
1 胡莹;Argo剖面浮标数据异常检测方法研究[D];桂林电子科技大学;2016年
,本文编号:2452088
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2452088.html