基于流固耦合的错位桨搅拌假塑性流体动力学特性
发布时间:2018-02-10 08:05
本文关键词: 假塑性流体 错位六弯叶桨 流固耦合 预应力模态分析 出处:《化工学报》2017年06期 论文类型:期刊论文
【摘要】:基于ANSYS Workbench分析平台,采用双向流固耦合计算方法,对错位六弯叶搅拌器(6PBT)和六弯叶搅拌器(6BT)的动力学特征进行了对比分析,根据桨叶与流体之间相互耦合运动特性,探讨了宏观流场的结构和搅拌功耗特性,分析了桨叶的变形和等效应力分布,并对6PBT桨在静态和预应力状态下的模态进行了对比研究。结果表明:同6BT桨相比,6PBT桨叶端部变形量增加了8%,端部应力提高了61%,而根部应力降低了6.7%,应力沿径向呈均匀化分布,这表明错位桨对流体的作用力更大,能够更快地传递能量,同时桨叶强度也得到相应提高;6PBT桨的静模态与预应力模态振型分布一致,在施加预应力后模态频率无明显改变,说明桨叶流场的流固耦合作用和预应力对桨叶模态的影响不大;随转速的增大,6PBT桨的节能效果显现,体现出错位桨的优势。
[Abstract]:Based on the ANSYS Workbench analysis platform, the dynamic characteristics of the staggered six curved blade agitator (6PBT) and the six curved blade agitator (6BTT) are compared and analyzed by using the two-way fluid-solid coupling calculation method. According to the coupled motion characteristics between the blades and the fluid, the dynamic characteristics of the six bend blade agitators are compared and analyzed. The structure of macroscopic flow field and the characteristics of stirring power consumption are discussed. The deformation and equivalent stress distribution of the blade are analyzed. The results show that compared with the 6BT propeller, the deformation at the end of the blade increases by 8 and the stress at the end increases by 61, while the stress at the root decreases by 6.7, and the stress distributes evenly along the radial direction. The results show that the force of the staggered propeller on the fluid is greater and the energy can be transferred more quickly. At the same time, the strength of the blade is also increased correspondingly, and the static mode mode distribution is consistent with the prestressing mode mode mode distribution, and the modal frequency does not change obviously after the prestressing force is applied. The results show that the fluid-solid coupling and prestress of blade flow field have little effect on blade mode, and the energy saving effect of 6PBT propeller is obvious with the increase of rotating speed, which shows the advantage of staggered propeller.
【作者单位】: 青岛科技大学机电工程学院;
【基金】:山东省自然科学基金项目(ZR2014EEM017) 山东省科技发展计划项目(2013YD09007)~~
【分类号】:TQ027.2
【相似文献】
相关期刊论文 前7条
1 胡跃华;蒋诚航;闫怀磊;万先平;金志江;;流固耦合作用下固支输液管道有限元分析[J];化工机械;2012年02期
2 张杰;赵军;冯武文;;某大型塔器流固耦合的数值仿真[J];科技信息;2009年14期
3 潘海丽;张亚新;;管道流体双向流固耦合的动力学模拟分析[J];中国石油和化工标准与质量;2013年06期
4 周利剑;;液体与储液结构互相作用流固耦合的实现[J];油气田地面工程;2009年11期
5 王艳林;吴兰鹰;王自东;;新型输液90°弯头结构流固耦合特性[J];北京科技大学学报;2010年07期
6 刘延安;;流固耦合管道固有频率及参数灵敏度分析[J];机械科学与技术;2012年03期
7 ;[J];;年期
相关博士学位论文 前1条
1 石代嗯;搅拌槽内流固耦合的实验研究与数值模拟[D];北京化工大学;2014年
相关硕士学位论文 前1条
1 王恒宇;高塔流固耦合振动特性分析及结构改进研究[D];湘潭大学;2015年
,本文编号:1500052
本文链接:https://www.wllwen.com/kejilunwen/huagong/1500052.html