当前位置:主页 > 科技论文 > 化工论文 >

矿物掺和料对高铝水泥基泡沫混凝土性能的影响

发布时间:2018-03-08 15:26

  本文选题:高铝水泥 切入点:泡沫混凝土 出处:《西南科技大学》2017年硕士论文 论文类型:学位论文


【摘要】:高铝水泥具有早期强度高、耐高温、抗硫酸盐侵蚀的特点,但是其后期强度易倒缩,限制了高铝水泥的应用范围。泡沫混凝土作为一种轻质、保温隔热的多孔材料备受亲耐,但其气孔率高、易干缩等问题也不容忽视。在高铝水泥中掺入矿物掺和料来制作泡沫混凝土,既解决了高铝水泥后期强度倒缩问题,又达到节能利废的目的,使泡沫混凝土更加绿色、环保。本文通过性能测试、微观分析等研究了四种矿物掺和料(石灰石、石膏、粉煤灰、矿渣)对高铝水泥物理力学性能的影响,同时研究了在最佳掺量下制作的泡沫混凝土的力学性能、保温隔热性能等。研究结果表明:(1)石灰石、石膏、粉煤灰、矿渣均能抑制高铝水泥后期强度倒缩;(2)石灰石、石膏、粉煤灰、矿渣的最佳掺量分别是10%、15%、5%、5%,在此范围,石灰石、石膏、粉煤灰的掺入对高铝水泥各龄期强度提升起到一定作用,矿渣没有贡献。(3)当掺量都为10%时,石灰石、石膏、粉煤灰、矿渣都能加速高铝水泥早期水化,释放大量热量。(4)在水灰比为0.5、聚丙烯纤维掺量为0.02%的前提下,掺入10%石灰石制作泡沫混凝土,由于石灰石与高铝水泥水化产物发生反应生成稳定的单碳型水化碳铝酸钙(C3A·CaC03·11H20),使其强度及导热系数增大,吸水率、干燥收缩值减小;当泡沫混凝土干密度为500Kg/m3时,7d、28d抗压强度和抗折强度为 1.57MPa、1.80MPa 和 1.O1MPa、1.49MPa;7d、28d 干缩值为 1190×10-6、1280×10-6;导热系数为 0.1390 W/(m·K)。(5)掺入15%石膏制作泡沫混凝土,由于石膏改变了高铝水泥的水化路径,生成稳定的钙矾石(Aft),使其强度及导热系数增大,吸水率、干燥收缩值减小;当泡沫混凝土干密度为500Kg/m3时,7d、28d抗压强度和抗折强度为1.56MPa、1.98MPa和0.99MPa、1.54MPa,分别提高2.63%、13.79%和 2.02%、4.19%;吸水率为 21.04%,降低 7.02%;7d、28d 干缩值为,1160×10-6、1270×10-6 分别降低 10.08%、7.79%;导热系数为 0.1393W/(m·K),升高7.98%。(6)掺入5%粉煤灰制作泡沫混凝土,粉煤灰的填充效应、火山灰效应以及C-H-S凝胶与高铝水泥水化产物反应生成水化钙黄长石(C2ASH8),使其强度增大,吸水率、干燥收缩值减小。当泡沫混凝土干密度为500Kg/m3时,28d抗压强度和抗折强度为1.90MPa、1.51MPa,分别提高9.20%、5.78%,7d、28d 干缩值为 1280×10-6、1370×10-6 降低 6.45%、6.05%。
[Abstract]:High alumina cement has the characteristics of high early strength, high temperature resistance and sulfate erosion resistance, but its later strength is easy to shrink, which limits the application scope of high aluminum cement. However, the problems of high porosity and easy drying and shrinkage can not be ignored. Adding mineral admixture to make foamed concrete can not only solve the problem of shrinkage of strength in the later stage of high aluminum cement, but also achieve the purpose of saving energy and making waste. In this paper, the effects of four mineral admixtures (limestone, gypsum, fly ash, slag) on the physical and mechanical properties of high alumina cement are studied by means of performance test and microscopic analysis. At the same time, the mechanical properties and thermal insulation properties of foamed concrete made under the optimum content are studied. The results show that the limestone, gypsum, fly ash and slag can all restrain the later strength of high aluminum cement from collapsing to 2) limestone and gypsum. The optimum amount of fly ash and slag is 10 / 15 / 55 respectively. In this range, the addition of limestone, gypsum, and fly ash plays a certain role in enhancing the strength of high alumina cement at all ages. The slag has no contribution.) when the addition is 10%, limestone, gypsum, Fly ash and slag can accelerate the early hydration of high alumina cement and release a great deal of heat. At the premise of water / cement ratio of 0.5 and polypropylene fiber of 0.02%, 10% limestone is added to make foam concrete. Due to the reaction between limestone and hydration products of high alumina cement, stable single carbon calcium carbonate hydrate (C3A 路CaC03 路11H20) is formed, which increases its strength and thermal conductivity, decreases its water absorption and drying shrinkage. When the dry density of foamed concrete is 500kg / m ~ 3, the compressive strength and flexural strength of foamed concrete are 1.57 MPA and 1.49 MPA / 28d respectively when the dry density of foamed concrete is 500kg / m ~ (3) and the dry shrinkage value is 1190 脳 10 ~ (-6) m 路K ~ (-1) and the thermal conductivity is 0.1390 W / m 路K ~ (-5) / m ~ (-1) / m ~ (-1) / m ~ (-1) / m ~ (-1) / m ~ (-1). 15% gypsum is added into the foam concrete to make foam concrete, because gypsum has changed the hydration path of high aluminum cement. A stable ettringite is formed, which increases its strength and thermal conductivity, decreases its water absorption and drying shrinkage. When the dry density of foamed concrete is 500 kg / m ~ 3, the compressive strength and flexural strength are 1.56 MPA and 0.99 MPA and 1.54 MPA, respectively, which increase by 2.63 ~ 13.79% and 2.022 ~ (4.19) respectively; the water absorption rate is 21.04, and the dry shrinkage value of 7.027 days is reduced to 11.60 脳 10 ~ (-6) ~ 1270 脳 10 ~ (-6); the thermal conductivity is 0.1393 W / m 路K ~ (-1) and 7.98%. 6) the dry shrinkage value of 7.027 days is reduced to 10.087.79; and the thermal conductivity is 0.1393 W / m 路K ~ (-1) and 7.98%. Ash to make foam concrete, The filling effect of fly ash, the pozzolanic effect and the reaction of C-H-S gel with the hydration product of high aluminum cement gave hydrated calcium feldspar C2ASH8, which increased its strength and water absorption. When the dry density of foamed concrete is 500 kg / m ~ 3, the compressive strength and flexural strength of foamed concrete are 1.90 MPA / m ~ 3 for 28 days and 1.51 MPa for 1.90 MPA / m ~ 3, respectively, and the dry shrinkage value of 9.20 ~ 5.78 ~ 5.78 days is increased to 1280 脳 10 ~ (-6) ~ (-1) 脳 10 ~ (-6) 脳 10 ~ (-6) m ~ (-6), and 6.45 ~ (-5) m ~ (-5) is decreased respectively.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU528

【参考文献】

相关期刊论文 前10条

1 蒋俊;卢忠远;牛云辉;蒋勇;;复合促凝剂对物理法超轻泡沫混凝土性能的影响研究[J];功能材料;2015年12期

2 蒋俊;卢忠远;牛云辉;;减水剂对物理法超轻泡沫混凝土气孔结构及性能的影响研究[J];武汉理工大学学报;2014年11期

3 蒋慧媛;;花岗石废浆在泡沫混凝土中的应用研究[J];粉煤灰;2014年02期

4 郭元强;;掺合料与外加剂对泡沫混凝土的性能影响研究[J];商品混凝土;2014年04期

5 刘香;张伟;丁铸;董素芬;;激发剂对砖粉泡沫混凝土性能的影响[J];混凝土;2014年01期

6 赵星;霍冀川;高亚;邓均;刘煦;;玄武岩纤维增强泡沫混凝土性能的研究[J];混凝土与水泥制品;2012年12期

7 曾权;邝志均;王业豪;向发清;吴向光;谢穗;;抛光废渣回收利用于抛光砖生产的研究[J];佛山陶瓷;2012年08期

8 张建青;;泡沫混凝土保温板外墙外保温施工及质量控制[J];山西建筑;2012年12期

9 刘警;孙振平;蒋正武;苏宇峰;杨正宏;;泡沫混凝土的研究和应用进展[J];混凝土世界;2011年10期

10 张磊蕾;王武祥;;丁苯乳液对泡沫混凝土孔结构和性能的影响研究[J];混凝土世界;2011年06期

相关硕士学位论文 前3条

1 袁富荣;新型高强泡沫混凝土的制备及其性能研究[D];石家庄铁道大学;2014年

2 穆木兰;镁矿渣水泥夹芯泡沫混凝土板性能的研究[D];大连理工大学;2010年

3 吴喜军;赤泥发泡混凝土的试验研究与工程应用[D];西安理工大学;2006年



本文编号:1584458

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huagong/1584458.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户95229***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com