金刚石表面改性处理及其导热复合材料制备与研究
发布时间:2018-03-13 18:23
本文选题:金刚石/铜复合材料 切入点:金刚石/铝复合材料 出处:《武汉理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:随着电子技术的不断发展,电子行业对电子封装材料的要求不断提高,传统的电子封装材料已不能满足半导体器件对电子封装材料的要求。金刚石/金属基复合材料综合了金属基体和金刚石增强体的优良特性而具有较好的导热性和可调控的热膨胀系数,是未来极具发展潜质的电子封装材料之一。由于人造金刚石现今已形成产业化,金刚石成本大大的降低,为金刚石/金属基复合材料的广泛应用提供了良好的物质基础。因此研究高热导率的金刚石/金属基复合材料的制备技术具有重要的理论意义和实际应用价值。本论文采用两种不同的表面改性处理方法,对金刚石颗粒表面进行改性预处理。利用扫描电子显微镜、拉曼光谱、透射电子显微镜、X射线光电子能谱等测试技术对金刚石颗粒表面微观形貌与结构进行分析与研究。采用不同的真空热压工艺制备了金刚石-石墨烯纳米墙/铝复合材料、金刚石-硼/铜复合材料和金刚石-硅/铜复合材料。利用扫描电镜对复合材料断面微观形貌进行了分析观察,并用激光热导仪测试了复合材料热扩散系数,系统的分析了金刚石体积分数和三种不同的金刚石表面改性处理方法对复合材料致密度和热导率的影响。主要结论如下:(1)采用石墨化元素Fe和Ni对应的还原铁粉和镍粉对金刚石粉体表面进行高温共混处理,在金刚石粉体表面生长石墨烯纳米墙。当改性处理温度为1200℃时,石墨烯纳米墙全部覆盖金刚石颗粒表面,当改性温度达到1400℃,金刚石颗粒表面部分石墨化。在覆盖石墨烯纳米墙的基础上,利用金刚石颗粒表面石墨烯纳米墙结构的高比表面积与铝基形成良好的界面结合,获得界面结合强度高的金刚石-石墨烯纳米墙/铝复合材料,复合材料热导率达到423 W/(m·K)。(2)采用非晶硼粉对金刚石颗粒进行高温共混处理,在金刚石颗粒全表面镀覆均匀厚度的硼层。采用盐浴法在金刚石粉体表面镀覆一层均匀厚度的硅层。将表面镀硅的金刚石粉体与高纯铜粉混合,采用不同的热压工艺参数制备金刚石-硅/铜复合材料,确定最佳热压工艺参数。将高纯铜粉分别与两种改性预处理后金刚石颗粒混合,在热压炉中采用热压工艺制备不同金刚石体积分数的金刚石-硼/铜复合材料和金刚石-硅/铜复合材料。金刚石-硼/铜复合材料得到的热导率最优值达到了474 W/(m·K),金刚石-硅/铜复合材料获得的热导率最优值则达到了501 W/(m·K)。
[Abstract]:With the development of electronic technology, the requirements of electronic packaging materials in electronic industry are increasing. Traditional electronic packaging materials can not meet the requirements of semiconductor devices for electronic packaging materials. Diamond / metal matrix composites have good thermal conductivity and excellent properties of metal matrix and diamond reinforcements. Adjustable coefficient of thermal expansion, It is one of the most promising electronic packaging materials in the future. Due to the industrialization of synthetic diamond, the cost of diamond has been greatly reduced. It provides a good material basis for the wide application of diamond / metal matrix composites, so it is of great theoretical significance and practical value to study the preparation technology of diamond / metal matrix composites with high thermal conductivity. In this paper, two different surface modification methods are used. The surface of diamond particles was pretreated by scanning electron microscope (SEM), Raman spectroscopy, Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) were used to analyze and study the microstructure and microstructure of diamond particles. Diamond graphene nanowall / aluminum composites were prepared by different vacuum hot pressing processes. Diamond boron / copper composites and diamond-silicon / copper composites were used to analyze and observe the microstructure of the composites, and the thermal diffusivity of the composites were measured by laser thermal conductivity instrument. The effects of diamond volume fraction and three different methods of diamond surface modification on the density and thermal conductivity of composites were systematically analyzed. The main conclusions are as follows: 1) the graphitized element Fe and Ni are used to reduce iron powder. The surface of diamond powder was blended with nickel powder at high temperature. Graphene nanowires were grown on the surface of diamond powder. When the modification temperature was 1200 鈩,
本文编号:1607622
本文链接:https://www.wllwen.com/kejilunwen/huagong/1607622.html