高压电解水控制系统设计
发布时间:2018-04-22 13:42
本文选题:电解水 + 高压制氢 ; 参考:《吉林大学》2017年硕士论文
【摘要】:随着科学技术的发展和人类生活水平的提高,清洁能源受到人们越来越多的关注,可再生、无污染逐渐成为选择能源的重要标准之一。经长期研究发现,氢气是最理想的能源之一。首先,氢气的热效率较高;其次,氢气燃烧后产物是水,没有任何污染物产生,是一种清洁性的能源。目前,电解水普遍采用的方法是双电解槽电解法,该方法由于隔膜的存在,无法承受较大的压强,更不能产生高压下的氢气和氧气。本文所描述的是一款用于实现高压电解水设备自动运行的控制系统的设计。该设备由电解槽、氢气储气仓、氧气储气仓、水箱、连接管及九路开关构成,采用从乌克兰引进的新型铁镍合金电极材料。该电极材料可在单电解槽中电解水,间接性产生氢气和氧气,实现氢气和氧气的时空分离。现在工业电解水每产生1标准立方米氢气和0.5标准立方米氧气所消耗的电能平均约为4.5kwh,该电极材料耗能约为4.1kwh,处于较低水平。此外,该电极材料可产生压强为10MPa以上的气体,不需外界加压就能实现高压储存气体,解决了双电解槽电解水中由于隔膜作用而不能达到高压的难题。该电极材料相当于一个变阻负载,产生同一种气体时,随时间的推移而电阻逐渐变大。在产生氢气时,需要为电极材料提供0.4V~1.4V的恒流电源;在产生氧气时,需要为电极材料提供-0.6V~-1.6V的恒流电源。该系统通过实时检测电极电压、电极电流、氢气储气仓和氧气储气仓的压强以及氢气储气仓和氧气储气仓的液位高度,实现自动控制电流参数的调整、电极电位的转换、电磁阀开关的开合、设备加水以及故障提示等功能,并可以通过外部8个按钮实现人工操作。此外,为方便了解设备的工作状态,使用液晶屏实时显示系统采集的数据信息;为能实现远程监控,使用C#语言开发了上位机显示与控制界面。本文给出了控制系统的硬件设计与软件设计,并进行了系统的实际测试和数据的采集与分析。本设计从模块上划分为:外部信号输入模块、控制信号输出模块、电极电源模块、信号采集模块、设备信息显示模块以及上位机界面开发。选用单片机STM32f103C8T6作为系统的控制中心,通过外部按键或者上位机界面启动系统,系统自动进入设备信息采集模式,在设备状态允许的情况下方可通过外部按钮控制高压电解水设备自动运行与生产。系统可通过电极电源模块自动调节电极的电流参数和电极电位状态,使电极间隔性产生氢气和氧气,同时通过信号采集模块周期性检测设备各部分状态,当设备状态出现异常时,将自动控制设备停止工作并通过设备信息显示模块进行故障提示。也可以通过外部按键或者上位机界面手动选择高压电解水设备处于自动运行模式或者手动运行模式。该系统的开发可以使高压电解水制取氢气和氧气实现工业化,在化工、冶金及食品工业等领域得到更广泛的应用。
[Abstract]:With the development of science and technology and the improvement of human living standard, people pay more and more attention to clean energy, renewable and pollution-free gradually become one of the important standards of energy choice. After long-term research, hydrogen is found to be one of the most ideal energy sources. Firstly, the thermal efficiency of hydrogen is high; secondly, the product of hydrogen combustion is water, without any pollutants, it is a kind of clean energy. At present, the common method of electrolytic water is double electrolytic cell electrolysis method. Because of the existence of diaphragm, the method can not bear a large pressure, let alone produce hydrogen and oxygen under high pressure. This paper describes the design of a control system for automatic operation of high voltage electrolytic water equipment. The equipment is composed of electrolysis cell, hydrogen gas storage chamber, oxygen gas storage chamber, water tank, connecting pipe and nine-way switch. The new Fe-Ni alloy electrode material imported from Ukraine is used. The electrode material can electrolyze water in a single electrolytic cell and indirectly produce hydrogen and oxygen, and realize the space-time separation of hydrogen and oxygen. At present, the average energy consumption of industrial electrolytic water for each generation of 1 cubic meter of hydrogen and 0.5 standard cubic meter of oxygen is about 4.5 kwh.The energy consumption of the electrode material is about 4.1 kwh. which is at a relatively low level. In addition, the electrode material can produce gas with a pressure above 10MPa, and can store gas at high pressure without external pressure, which solves the problem of high voltage in electrolytic water of double electrolytic cell because of diaphragm action. The electrode material is equivalent to a resistive load, and the resistance increases with time when the same gas is produced. It is necessary to provide constant current power supply of 0.4V~1.4V for electrode material while producing hydrogen and constant current power supply of -0.6V / -1.6V for electrode material when oxygen is generated. The system can automatically control the adjustment of current parameters and the conversion of electrode potential by real-time detecting electrode voltage, electrode current, the pressure of hydrogen gas storage chamber and oxygen storage tank, and the liquid level height of hydrogen gas storage chamber and oxygen storage tank. The opening and closing of solenoid valve switch, equipment adding water and fault indication can be manually operated by 8 external buttons. In addition, in order to understand the working state of the equipment, the display and control interface of the host computer is developed with C # language in order to display the data collected by the system in real time. This paper gives the hardware and software design of the control system, and carries on the actual test and the data collection and analysis of the system. The design is divided into three parts: external signal input module, control signal output module, electrode power module, signal acquisition module, equipment information display module and upper computer interface development. The single-chip computer STM32f103C8T6 is selected as the control center of the system. The system automatically enters the equipment information collection mode by starting the system through the external keys or the upper computer interface. The automatic operation and production of high voltage electrolytic water equipment can be controlled by external buttons when the state of the equipment allows. The system can automatically adjust the electrode current parameters and electrode potential state through the electrode power module, so that the electrode spacing can produce hydrogen and oxygen, at the same time, the signal acquisition module periodically detects the state of each part of the equipment. When there is an abnormal state of the device, the device will be automatically controlled to stop working and fault prompted through the device information display module. It is also possible to manually select high voltage electrolytic water equipment in automatic operation mode or manual operation mode through external keys or upper computer interface. The development of the system can industrialize the production of hydrogen and oxygen from high pressure electrolytic water, and it can be widely used in chemical, metallurgical and food industries.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ116.21;TP273
【参考文献】
相关期刊论文 前2条
1 张西子;;氢能源及其利用[J];科技致富向导;2012年23期
2 鲍官军,计时鸣,张利,王亚良;CAN总线技术、系统实现及发展趋势[J];浙江工业大学学报;2003年01期
相关硕士学位论文 前1条
1 武壮;CAN总线应用系统设计[D];河北大学;2005年
,本文编号:1787471
本文链接:https://www.wllwen.com/kejilunwen/huagong/1787471.html