尖晶石型远红外陶瓷材料的研究
发布时间:2018-05-03 17:23
本文选题:红外辐射 + 尖晶石 ; 参考:《南京理工大学》2015年硕士论文
【摘要】:本文主要研究尖晶石型铁氧体材料,其用于大功率LED散热方向,该材料为新型无机非金属材料,由铁及其它一种或多种金属组成复合氧化物。因其为尖晶石结构,不同价态阳离子占据晶体四面体或八面体位置,形成不同类型尖晶石结构的复合物,使铁氧体材料具有良好的电、磁、光等性能。研究表明,尖晶石型铁氧体材料在红外波段具有良好的辐射性能,且可以通过离子部分取代形成混合型结构,改善其红外辐射性能。本文以MgFe2O4为研究对象,采用不同制备工艺、离子掺杂,并通过X射线衍射(XRD)、傅立叶红外光谱仪(FT-IR)、粉末粒度、扫描电镜(SEM)、红外发射率及孔隙率等测试手段分析,探讨其对红外辐射性能的影响及物理机制,主要内容如下:GNP法制备高纯度尖晶石型MgFe2O4材料,随着甘氨酸增加,燃烧反应愈加剧烈,颗粒内部出现大量孔洞;经高温煅烧孔洞逐渐消失,出现明显烧结现象,形成片层状结构。且MgFe2O4材料(G/M=2.5:1)经1200℃烧结,3~12μm波段红外发射率达到0.80;提高煅烧温度(900~1100℃),红外发射率由0.68增加到0.83。固相法制备的Mg1-xMnxFe2O4材料为尖晶石相MgFe2O4、Fe3O4和Mn3O4;随着Mn掺杂量的增加,晶胞体积发生膨胀,晶格参数增大产生畸变。Mg1-xMnxFe2O4材料FT-IR谱图相似,随着Mn掺杂量的改变,吸收峰位置发生偏移,不同离子占据尖晶石四面体和八面体位置。通过预烧再球磨工艺,制备出粒度细小的粉体经烧结得到致密结构陶瓷材料。掺入Mn后组份为Mg0.8Mn0.2Fe2O4的材料性能最佳,3~5μm和8~12μm波段红外发射率分别达到0.776和0.936。固相法制备微量Y3+掺杂的Mg0.8Mn0.Fe2O4材料,其物相均为为尖晶石型MgFe2O4 Fe3O4和Mn3O4;且随着掺杂量的增加,晶胞体积收缩,晶格参数减小、产生畸变。Y3+掺杂后Fe3O4材料FT-IR谱图相似,随着掺杂量的改变,吸收峰位置发生微偏,Y3+占据晶格八面体位置。当Y203掺杂量为0.6wt.%,材料红外辐射性能最优,3~5μm和8-12μm波段红外发射率分别达到0.869和0.948。固相法制备Co/Y共掺的M90.8Mn0.2Fe2O4材料,虽为尖晶石结构,但其结晶度较低,使微量掺杂后红外辐射性能出现小幅降低。且FT-IR谱图中1000~1200cm-1区域出现叠加的较宽吸收峰,共掺后组份为(Mg08Mn0.2)0.7Co0.3Fe2O4,掺入0.6wt.%Y2O3的材料性能最优,3~5μm和8~12μm波段红外发射率分别为0.848和0.945。
[Abstract]:In this paper, the spinel ferrite material, which is used in the direction of high power LED heat dissipation, is a new inorganic nonmetallic material, which is composed of iron and one or more other metals. Because of its spinel structure, different valence cations occupy the tetrahedron or octahedron position of crystal, and form different types of spinel structure complex, which makes the ferrite material have good electrical, magnetic and optical properties. The results show that spinel ferrite has good radiation performance in infrared band and can be partially replaced by ions to form a mixed structure to improve its infrared radiation performance. In this paper, MgFe2O4 was studied by using different preparation techniques, ion doping, X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), powder particle size, scanning electron microscope (SEM), infrared emissivity and porosity, etc. The effects on infrared radiation properties and physical mechanism were discussed. The main contents were as follows: high purity spinel MgFe2O4 materials were prepared by the MgFe2O4 method. With the increase of glycine, the combustion reaction became more intense, and a large number of pores appeared in the particles. After high temperature calcination, the holes gradually disappeared, and the obvious sintering phenomenon occurred, forming a lamellar structure. Moreover, the infrared emissivity of MgFe2O4 material (G / M 2.5: 1) sintered at 1200 鈩,
本文编号:1839399
本文链接:https://www.wllwen.com/kejilunwen/huagong/1839399.html