当前位置:主页 > 科技论文 > 化工论文 >

新型高功率MPCVD金刚石膜装置模拟及实验研究

发布时间:2018-05-11 08:52

  本文选题:高品质金刚石膜 + 高功率MPCVD装置 ; 参考:《太原理工大学》2015年硕士论文


【摘要】:化学气相沉积(CVD)高品质的金刚石膜具有优异的物理、化学和机械性能,因此在许多高技术领域有着广阔的应用前景。微波等离子体化学气相沉积(MPCVD)法是制备高品质金刚石膜的首选方法,但是由于沉积速率低、成本高,导致这种高性能的膜材料无法得到广泛的应用。通过大幅度升高沉积气体的压强,能够提高金刚石膜的沉积速率,但是会减小沉积面积。而兼顾速率和面积,则需要大幅度升高MPCVD装置所能容纳的功率。由于目前现有的装置,都存在不同的导致工作功率不能提高的缺点,所以本文选择高功率MPCVD装置的研发作为研究课题。 首先,本文对高品质CVD金刚石膜、MPCVD金刚石膜装置的发展进行了论述,对不同类型的MPCVD装置的优缺点进行了讨论,在此基础上结合高功率MPCVD金刚石膜装置通常需要满足的基本条件,提出一种兼顾目前装置优点的命名为TYUT型的新型MPCVD装置模型。然后,使用模拟软件,依照电场位置、状态和强度对装置的基本尺寸和关键部件尺寸进行了模拟和优化。其次,本文对可能造成装置失谐的因素进行了系统模拟分析,并使用模拟软件对装置设计的调谐机构的性能进行了模拟验证。模拟结果表明,微波频率偏差、谐振腔加工误差、基片高度的变化等都会造成装置的失谐,而所设计的调谐机构能够实现调谐。这些数值模拟研究结果为TYUT型MPCVD金刚石膜沉积装置的建立奠定了基础。 根据模拟优化的结果,本文建立了TYUT型的MPCVD装置。通过实验测试表明,,所建立的装置不但能够容纳很高的微波功率(>9kW),而且具有优良的调谐功能。利用所建造的装置,本文分别进行了高功率、高气体压强条件下的沉积实验。实验所制备的直径40mm金刚石膜的沉积速率达到12μm/h,厚度不均匀性<5%;直径65mm大面积金刚石膜的沉积速率达到5.6μm/h,厚度不均匀性<6%。两种金刚石膜均具有很高的品质。该实验结果表明,TYUT型的MPCVD装置具有优良的性能,达到了设计的目的,能够满足设计高功率密度条件下大面积高品质金刚石膜的均匀、快速沉积。
[Abstract]:Chemical Vapor deposition (CVD) high quality diamond film has excellent physical, chemical and mechanical properties, so it has a wide application prospect in many high-tech fields. Microwave plasma chemical vapor deposition (MPCVD) is the preferred method for the preparation of high quality diamond films. However, due to the low deposition rate and high cost, this high performance film material can not be widely used. By increasing the pressure of the deposited gas, the deposition rate of diamond film can be increased, but the deposition area will be reduced. However, it is necessary to increase the power capacity of the MPCVD device greatly by considering both the speed and the area. Because the existing devices all have different shortcomings which lead to the improvement of the working power, so the research and development of the high power MPCVD device is selected as the research topic in this paper. Firstly, the development of high quality CVD diamond film device is discussed, and the advantages and disadvantages of different MPCVD devices are discussed. On the basis of this, a new type of MPCVD device named TYUT is proposed, which takes into account the advantages of high power MPCVD diamond film device and the basic conditions that usually need to be satisfied. Then, the basic size and key component size of the device are simulated and optimized according to the position, state and strength of the electric field using the simulation software. Secondly, the factors which may cause the detuning of the device are simulated and analyzed systematically, and the performance of the tuning mechanism designed by the device is simulated and verified by using the simulation software. The simulation results show that microwave frequency deviation, cavity machining error and substrate height change will result in the detuning of the device, and the designed tuning mechanism can be tuned. These numerical simulation results lay a foundation for the establishment of TYUT type MPCVD diamond film deposition device. According to the result of simulation and optimization, the TYUT type MPCVD device is established in this paper. The experimental results show that the device can not only accommodate high microwave power (> 9 kW), but also have excellent tuning function. In this paper, deposition experiments under high power and high gas pressure were carried out by using the device. The deposition rate of diameter 40mm diamond film is 12 渭 m / h and the thickness inhomogeneity is less than 5, and the deposition rate of diameter 65mm large area diamond film is 5.6 渭 m / h, and the thickness inhomogeneity is less than 6 渭 m / h. Both kinds of diamond films have high quality. The experimental results show that the TYUT type MPCVD device has excellent performance and achieves the purpose of design. It can meet the requirements of uniform and rapid deposition of large area and high quality diamond films under the conditions of high power density design.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ127.11

【参考文献】

相关期刊论文 前8条

1 吴小国;熊瑛;杨保和;李翠平;孙大智;李晓伟;;金刚石/硅复合膜的导热特性研究[J];光电子.激光;2007年08期

2 于盛旺;李晓静;张思凯;范朋伟;黑鸿君;唐伟忠;吕反修;;新型MPCVD装置在高功率密度下高速沉积金刚石膜[J];功能材料;2011年09期

3 吕反修,唐伟忠,李成明,陈广超,佟玉梅;大面积光学级金刚石自支撑膜研究进展[J];红外技术;2003年04期

4 王凤英;唐伟忠;姜春生;于盛旺;;椭球形微波等离子体金刚石膜沉积装置与金刚石膜的制备[J];金属热处理;2009年09期

5 王建军,吕反修,于文秀,佟玉梅,邬钦崇,王守国;微波等离子体化学气相沉积金刚石薄膜研究[J];人工晶体学报;1996年02期

6 于盛旺;刘艳青;唐伟忠;申艳艳;贺志勇;唐宾;;工艺参数对高功率MPCVD金刚石膜择优取向的影响研究[J];人工晶体学报;2012年04期

7 于盛旺;刘艳青;唐伟忠;申艳艳;贺志勇;唐宾;;高功率MPCVD金刚石膜透波窗口材料制备研究[J];人工晶体学报;2012年04期

8 安康;刘小萍;李晓静;钟强;申艳艳;贺志勇;于盛旺;;新型高功率MPCVD金刚石膜装置的数值模拟与实验研究[J];人工晶体学报;2015年06期

相关博士学位论文 前1条

1 李博;MPCVD法制备光学级多晶金刚石膜及同质外延金刚石单晶[D];吉林大学;2008年



本文编号:1873293

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huagong/1873293.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b9252***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com