当前位置:主页 > 科技论文 > 化工论文 >

ZnO纳米阵列的可控制备

发布时间:2018-05-25 10:15

  本文选题:ZnO + 纳米阵列 ; 参考:《湖南师范大学》2015年硕士论文


【摘要】:ZnO在常温时的禁带宽度是3.37eV,激子束缚能是60meV,是重要的II-VI族直接带隙宽禁带半导体材料,其原料丰富、价格低廉,并拥有绿色环保、性能稳定及抗辐射能力强等优点使它在光电子器件、微电子器件、太阳能电池及激光器等领域有重要的应用。本论文主要研究了在FTO透明导电玻璃上对ZnO纳米阵列的可控制备,利用的是两步法制备Zn O纳米阵列,即首先在FTO透明导电玻璃上利用溶胶-凝胶法制备ZnO籽晶层,然后再用水热法在籽晶层上制备ZnO纳米阵列。溶胶-凝胶法对实验仪器的要求不高,水热法是在溶液中进行化学反应的方法,与其他方法相比,水热法制备流程简单、成本低廉,能够在大面积的基底上实现ZnO纳米阵列的均匀化生长。在制备Zn O的过程中,采用乙酸锌[Zn(CH3COO)2·2H2O]作为锌源,然后在冰醋酸及乙醇胺的共同作用下,溶于乙二醇甲醚此溶剂中,并于室温环境中冷却生成凝胶;之后再利用旋涂的方法把溶胶均匀涂覆于FTO透明导电玻璃上,通过热处理方法制备ZnO薄膜。在制备ZnO纳米阵列中,采用乙酸锌[Zn(CH3COO)2·2H2O]和六次甲基四胺(C6H12N4)在热介质中溶解;溶解后的锌盐乙酸锌[Zn(CH3COO)2·2H2O]与碱液以离子、分子的形式存在于溶液中,最后冷却形成饱和溶液,随后再形成晶粒,最后结晶生成ZnO纳米阵列。利用X射线衍射(XRD)、扫描电子显微镜(SEM)及紫外-可见分光光度计(UVS)等表征方法,对ZnO纳米阵列的晶体结构、光学特性及其表面形貌进行了研究分析,探讨了不同的籽晶层层数、不同的锌源(Zn2+)浓度、不同的制备时间及不同锌碱比(Zn2+/OH-)等对ZnO纳米阵列的影响,对Zn O纳米阵列最佳制备工艺的采取了深入研究,实现ZnO纳米阵列的可控制备,从而获得高质量的ZnO纳米阵列。通过实验得出Zn O纳米阵列的最佳制备条件:配制的前驱体溶液的锌源用乙酸锌,锌离子(Zn2+)浓度为0.15mol/L,锌碱比(Zn2+/OH-)为5:1,水浴反应时间为1.5小时,水浴温度为900C,其可见光区的透过率能达75%。
[Abstract]:The band gap width of ZnO is 3.37eV at room temperature, and the exciton binding energy is 60meV. It is an important direct band gap wide band gap semiconductor material of II-VI family. It is rich in raw materials, low in price and green in environmental protection. The advantages of stable performance and strong radiation resistance make it have important applications in optoelectronic devices, microelectronic devices, solar cells and lasers. In this paper, the controllable preparation of ZnO nanoarrays on FTO transparent conductive glass was studied. The ZnO nanorods were prepared by two-step method. Firstly, the ZnO seed layer was prepared on FTO transparent conductive glass by sol-gel method. Then the ZnO nanoarrays were prepared on the seed layer by hydrothermal method. The sol-gel method is not required for experimental instruments. Hydrothermal method is a method for chemical reaction in solution. Compared with other methods, hydrothermal method is simple in preparation process and low in cost. ZnO nanoarrays can be homogenized on a large area of substrate. In the preparation of Zno, zinc acetate [Zn(CH3COO)2 2H2O] was used as the source of zinc, and then dissolved in ethylene glycol methyl ether in the presence of glacial acetic acid and ethanolamine, and cooled at room temperature to form a gel. Then the sol was uniformly coated on FTO transparent conductive glass by spin-coating method and ZnO thin films were prepared by heat treatment. In the preparation of ZnO nanoarrays, zinc acetate [Zn(CH3COO)2 2H2O] and hexamethylenetetramine C6H12N4) were dissolved in a hot medium, and the dissolved zinc salt zinc acetate [Zn(CH3COO)2 2H2O] and lye existed in the form of ions and molecules in the solution, and finally cooled to form a saturated solution. Then the grains are formed and the ZnO nanoscale arrays are formed by crystallization. The crystal structure, optical properties and surface morphology of ZnO nanoarrays were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis spectrophotometer (UV). The effects of different Zn ~ (2 +) concentration, different preparation time and Zn ~ (2 / OH-) ratio on ZnO nanowires were studied. The optimal preparation process of Zn-O nanoarrays was studied, and the controllable preparation of ZnO nanoarrays was realized. In order to obtain high quality ZnO nanoarrays. The optimum preparation conditions were obtained as follows: zinc acetate, Zn ~ (2 +), Zn ~ (2 +) = 0.15 mol / L, Zn ~ (2 / O) = 5: 1, water bath reaction time 1.5 hours, Zn ~ (2 / O) = 5: 1, Zn ~ (2 +) = 0.15 mol 路L ~ (-1), Zn ~ (2 +) / O _ (2) = 5: 1, water bath time = 1.5 hours. The water bath temperature is 900C, and the transmittance of visible region can reach 75cm.
【学位授予单位】:湖南师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ132.41;TB383.1

【参考文献】

相关期刊论文 前1条

1 田志宏;张秀华;田志广;;X射线衍射技术在材料分析中的应用[J];工程与试验;2009年03期

相关硕士学位论文 前1条

1 熊华波;ZnO场发射性能研究[D];电子科技大学;2005年



本文编号:1933061

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huagong/1933061.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户18a88***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com