分级结构多孔碳材料在燃料吸附脱硫方面的应用
发布时间:2018-05-27 21:35
本文选题:分级结构 + 多孔碳材料 ; 参考:《浙江理工大学》2015年硕士论文
【摘要】:近些年来,由于环境问题越来越受到人们的重视,发达国家的法律法规已经对燃料中的含硫量开始制定相关政策,并要求燃料中的含硫量低到一定程度。所以,针对如何对燃料中的含硫物进行脱硫处理的研究显得日益重要。传统的加氢脱硫法由于存在能耗大,并存在对燃料中噻吩及噻吩的衍生物脱除效果较差等缺点。而吸附脱硫法通过使用不同的吸附剂,或者通过对吸附剂进行改性等方面的研究来提高吸附剂的吸附性能。因此设计合成具有高比表面积、优越的多孔性等吸附剂成为研究的重点。对于体积较大的多孔固体,一般来说,在小孔径孔中的扩散是吸附过程的主要限速步骤。因此将多孔吸附剂设计成分级结构,如多孔碳纳米球、大孔-介孔复合的多孔碳等,可有效缩短吸附质在小孔中的扩散程,从而提高吸附速率,这是非常有意义的。本论文主要以分级结构多孔碳吸附剂为研究对象,采用不同的方法制备合成了一系列具有高比表面积,分级结构的多孔碳材料吸附剂。同时,运用了SEM,TEM,N2吸附-脱附等技术对分级结构多孔碳材料的结构进行表征,并研究了其吸附燃料中二苯并噻吩的吸附性能。具体的研究内容如下: 1.以MgO小球为模板,酚醛树脂为碳源制备多孔碳材料,在经KOH/C质量比为4:1活化后获得大孔-介孔复合孔结构碳材料,拥有最大的比表面积(1502.7m2g-1)和孔道体积(1.05cm3g-1),该材料在吸附DBT的实验中可以在10分钟内达到吸附平衡,吸附动力学拟合遵循准二阶动力学模型,且最大吸附量可以达到153.6mg g-1。 2.利用水热法制备的葡萄糖纳米微球在经过ZnCl2/C的质量比为4:1活化后的分级结构葡萄糖碳球拥有最高的比表面积(3050.8m2g-1)和孔道体积,其在吸附DBT的实验中可以在30分钟左右达到吸附平衡,吸附动力学遵循伪二级动力学模型,吸附等温线拟合为Freundlich拟合且最大吸附量可以达到121mg g-1。 3.以甲醛、间苯二酚等为原料制备酚醛树脂球,在经ZnCl2/C质量比为4:1活化的分级结构酚醛树脂碳球拥有最高的比表面积(2839.7m2g-1)和孔道体积,其在吸附DBT的实验中可以在10分钟左右达到吸附平衡,吸附动力学遵循准二阶动力学模型,,吸附等温线拟合为Langmuir拟合且吸附量可以达到220mg g-1。
[Abstract]:In recent years, due to more and more attention to environmental problems, the laws and regulations of developed countries have begun to formulate relevant policies on sulphur content in fuel, and require the sulphur content in fuel to be as low as a certain degree. Therefore, it is increasingly important to study how to desulphurize sulfur in fuel. The traditional hydrodesulfurization method has the disadvantages of high energy consumption and poor removal efficiency of thiophene and thiophene derivatives in fuel. By using different adsorbents or modifying the adsorbents, the adsorption properties of adsorbents can be improved by adsorption desulfurization. Therefore, the design and synthesis of adsorbents with high specific surface area and excellent porosity have become the focus of research. For large porous solids, diffusion in small pore pores is the main speed limiting step in the adsorption process. Therefore, it is very meaningful to design porous adsorbents into hierarchical structures, such as porous carbon nanospheres, macroporous mesoporous composite porous carbon and so on, which can effectively shorten the diffusion process of adsorbents in micropores and thus increase the adsorption rate. In this paper, a series of porous carbon adsorbents with high specific surface area and graded structure were synthesized by different methods. At the same time, the adsorption and desorption of dibenzothiophene in fuel were studied by means of SEM-TEMN _ 2 adsorption and desorption techniques. The specific contents of the study are as follows: 1. Porous carbon materials were prepared by using MgO microspheres as template and phenolic resin as carbon source. The macroporous mesoporous composite carbon materials were obtained by activation at 4:1 of KOH/C mass ratio. The material has the largest specific surface area of 1502.7m2g-1) and the pore volume of 1.05cm3g-1.The adsorption equilibrium of the material can be achieved in 10 minutes in the experiment of adsorption of DBT. The adsorption kinetic fitting follows the quasi-second-order kinetic model, and the maximum adsorption amount can reach 153.6mg g-1. 2. The glucose nanospheres prepared by hydrothermal method have the highest specific surface area (3050.8m2g-1) and pore volume after ZnCl2/C activation at 4:1. In the experiment of adsorption of DBT, the adsorption equilibrium can be achieved in about 30 minutes, the adsorption kinetics follows pseudo-second-order kinetic model, the adsorption isotherm is fitted by Freundlich and the maximum adsorption amount can reach 121mg g-1. 3. Phenolic resin spheres were prepared from formaldehyde, resorcinol and other raw materials. The graded phenolic resin carbon spheres, activated at 4:1 by mass ratio of ZnCl2/C, had the highest specific surface area of 2839.7 m2g-1) and pore volume. In the experiment of adsorption of DBT, the adsorption equilibrium can be achieved in about 10 minutes, the adsorption kinetics follows the quasi-second-order kinetic model, the adsorption isotherm is fitted by Langmuir and the adsorption amount can reach 220mg g-1.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ424;TQ127.11
【参考文献】
相关期刊论文 前3条
1 叶林顺;二苯噻吩的微生物脱硫及其在脱煤中有机硫的应用[J];重庆环境科学;2000年01期
2 张存;王峰;潘小玉;刘晓勤;;酸性离子液体萃取-氧化模拟油品脱硫研究[J];燃料化学学报;2011年09期
3 褚雪梅;胡玉峰;李吉广;梁倩卿;刘艳升;张先明;彭效明;岳文佳;;四氟硼酸盐类离了液体对典型柴油的萃取脱硫研究(英文)[J];Chinese Journal of Chemical Engineering;2008年06期
本文编号:1943846
本文链接:https://www.wllwen.com/kejilunwen/huagong/1943846.html