稀土掺杂磷硼酸盐荧光玻璃及玻璃陶瓷的制备、光谱调控与应用研究
发布时间:2018-06-04 05:45
本文选题:磷硼酸盐玻璃与玻璃陶瓷 + 稀土离子 ; 参考:《桂林电子科技大学》2017年硕士论文
【摘要】:稀土离子掺杂荧光材料凭借其优异的发光性能在白光LED、显示器件、太阳能电池、激光和光学温度传感器等诸多领域有着广泛的潜在应用价值,引起了社会各界的关注。荧光玻璃及玻璃陶瓷具有其他荧光材料不可比拟的优势,例如透明、均匀、成本低廉和易加工等,同时也是一种优异的稀土离子基质材料。因此,开展稀土掺杂荧光玻璃及玻璃陶瓷的研究有重要的科学意义和应用价值。本文通过高温熔融-淬冷法制备了Eu~(3+)、Tm~(3+)、Tb~(3+)和Sm~(3+)离子单掺和共掺Na2O-CaO-P2O5-B2O3-ZrO2磷硼酸盐玻璃,并通过可控析晶法制备了Tb~(3+)和Eu~(3+)离子单掺和共掺磷硼酸盐玻璃陶瓷。利用XRD、红外光谱、TEM和密度测量对磷硼酸盐玻璃及玻璃陶瓷进行了结构分析;采用吸收光谱、激发光谱、发射光谱和色坐标研究了荧光磷硼酸盐玻璃及玻璃陶瓷的光学性能;利用荧光衰减结并合相关的理论及公式计算对稀土离子在磷硼酸盐玻璃及玻璃陶瓷中的能量传递进行了研究;对Tb~(3+)/Eu~(3+)共掺磷硼酸盐玻璃及玻璃陶瓷进行变温发射光谱测试,并基于荧光强度比技术研究了其荧光温敏特性。得到如下的研究结果:1.Eu~(3+)离子掺杂磷硼酸盐玻璃:XRD图谱表明,样品中没有任何析晶,呈典型的非晶态玻璃结构。红外光谱分析结果表明,玻璃的网络结构中主要有[BO3]、[BO4]和[PO4]三种基团,并通过P-O-P,P-O-B,B-O和P=O键互相连接。在393nm激发下,Eu~(3+)离子单掺磷硼酸盐玻璃的发射光谱及荧光衰减显示,Eu~(3+)离子掺杂浓度达到2.5mol%时样品中发生稀土离子的浓度猝灭现象。通过对Eu~(3+)离子单掺磷硼酸盐玻璃的色坐标进行计算发现其色坐标为(0.65,0.34)接近于标准红光的色坐标(0.67,033)。2.Tb~(3+)/Sm~(3+)离子共掺磷硼酸盐玻璃:在374nm激发下玻璃样品表现出黄色的发射光,通过改变Sm~(3+)离子浓度可调控发光性能。发射光谱与荧光衰减结果证实存在Tb~(3+)→Sm~(3+)的能量传递过程,能量传递过程主要是以无辐射跃迁的共振传递形式进行,相应的传递机理为电四极子-电四极子相互作用。3.Tm~(3+)/Tb~(3+)/Sm~(3+)离子共掺磷硼酸盐玻璃:在358nm激发下玻璃样品发射光进入了白光区域,符合白光LED色坐标的基本要求。随着Sm~(3+)离子浓度的增加,玻璃样品的发射光逐渐由冷色调向暖色调移动。当Tm~(3+)、Tb~(3+)和Sm~(3+)离子的掺杂浓度分别为0.4、1.0和0.8mol%时,玻璃样品的色坐标为(0.3339,0.3241),这与标准白光的色坐标(0.3333,0.3333)非常接近。发射光谱与荧光衰减结果证实存在Tm~(3+)→Sm~(3+)和Tb~(3+)→Sm~(3+)的能量传递,能量传递主要以无辐射跃迁的共振传递形式进行。4.Tb~(3+)/Eu~(3+)离子共掺磷硼酸盐玻璃:在378nm激发下玻璃样品的发射光主要在黄光区,通过改变Eu~(3+)离子浓度可调控发光性能。发射光谱与荧光衰减结果证实存在Tb~(3+)→Eu~(3+)的能量传递过程,能量传递过程主要是以无辐射跃迁的共振传递和交叉驰豫传递的形式进行。353K-573K温度范围内的变温发射光谱表明,Tb~(3+)/Eu~(3+)离子共掺磷硼酸盐玻璃具备优良的荧光温敏特性,其绝对灵敏度为0.0036K-1。5.Tb~(3+)/Eu~(3+)离子共掺磷硼酸盐玻璃陶瓷:XRD图谱表明,玻璃陶瓷中的纳米晶体为NaCaPO4,根据谢乐公式以及TEM分析估算出晶体的尺寸大约13nm。在378nm激发下,Tb~(3+)/Eu~(3+)离子共掺磷硼酸盐玻璃陶瓷的发射光处于黄光区,通过改变Eu~(3+)离子浓度可调控发光性能。发射光谱与荧光衰减结果证实存在Tb~(3+)→Eu~(3+)的能量传递过程,能量传递过程主要是以无辐射跃迁的共振传递和交叉驰豫传递的形式进行。293-573K温度范围内的变温发射光谱表明,相对于Tb~(3+)/Eu~(3+)离子共掺磷硼酸盐玻璃,玻璃陶瓷具备更加优异的荧光温敏特性,其最大绝对灵敏度为0.0066K-1,最大相对灵敏度为4.55%K-1。
[Abstract]:The rare earth ion doped fluorescent materials have a wide range of potential applications in many fields, such as white light LED, display parts, solar cells, laser and optical temperature sensors, because of their excellent luminescence properties. The fluorescent glass and glass ceramics have the incomparable advantages of other fluorescent materials, such as transparency, The study of rare earth doped fluorescent glass and glass ceramics is of great scientific significance and application value. This paper has prepared Eu~ (3+), Tm~ (3+), Tb~ (3+) and Sm~ (3+) ions single and Co doped Na2O-CaO-P2O5- by high temperature melting quenching. Tb~ (3+) and Eu~ (3+) ion and Co doped Borate Glass ceramics were prepared by controllable crystallization method. The structure of phosphborate glass and glass ceramics was analyzed by XRD, infrared spectroscopy, TEM and density measurements. The absorption spectra, excitation spectra, emission spectra and color coordinates were used to study phosphor phosphor. The optical properties of borate glass and glass ceramics were studied by using the theory and formula of fluorescence decay junctions and correlation. The energy transfer of rare earth ions in phosphborate glass and glass ceramics was studied. The temperature emission spectra of Tb~ (3+) /Eu~ (3+) Co doped Borate Glass and glass ceramics were measured and the fluorescence intensity was based on the fluorescence intensity. The fluorescence thermosensitive properties of the 1.Eu~ (3+) ion doped phosphborate glass were obtained. The XRD map showed that there was no crystallization in the sample and the typical amorphous glass structure. The results of infrared spectrum analysis showed that there were three main groups of [BO3], [BO4] and [PO4] in the network structure of the glass, and through P-O-P, P-. O-B, B-O and P=O bonds are interconnected. Under 393nm excitation, the emission spectra and fluorescence decay of Eu~ (3+) ion doped Borate Glass show that the concentration quenching of rare earth ions occurs in the samples when the doping concentration of Eu~ (3+) ions reaches 2.5mol%. The color coordinates of the Eu~ (3+) ion doped Borate Glass are calculated and the color coordinates are found. (0.65,0.34) a color coordinate (0.67033).2.Tb~ (3+) /Sm~ (3+) ion Co doped phosphate borate glass near standard red light: a yellow emission light is displayed in the glass sample excited by 374nm, and the luminescence properties can be regulated by changing the concentration of Sm~ (3+) ions. The emission spectra and fluorescence decay results confirm the existence of the energy transfer process of Tb~ (3+) to Sm~ (3+). The energy transfer process is carried out mainly in the form of resonance transfer without radiative transition, and the corresponding transfer mechanism is.3.Tm~ (3+) /Tb~ (3+) /Sm~ (3+) ion Co doped Borate Glass with electric quadrupole electrical quadrupole interaction. The emission light of glass sample into the white light region under the excitation of 358nm, which is in accordance with the basic requirements of the white LED color coordinates. With S When the concentration of m~ (3+) ions increases, the emission light of the glass samples gradually moves from the cold tone to the warm tone. When the doping concentration of Tm~ (3+), Tb~ (3+) and Sm~ (3+) ions is 0.4,1.0 and 0.8mol%, the color coordinates of the glass samples are (0.3339,0.3241), which are very close to the standard white light color coordinates (0.3333,0.3333). The emission spectra and fluorescence decay junctions are very close. The energy transfer of Tm~ (3+), Sm~ (3+) and Tb~ (3+) to Sm~ (3+) is confirmed. The energy transfer is mainly composed of.4.Tb~ (3+) /Eu~ (3+) ions Co doped Borate Glass in the form of non radiative transition. The emission light of the glass sample is mainly in the Yellow region. The energy transfer process of Tb~ (3+) to Eu~ (3+) is confirmed by the spectra and fluorescence decay results. The energy transfer process is mainly in the form of the.353K-573K temperature range in the form of the.353K-573K temperature range in the form of the resonance transfer and the cross relaxation transfer of the non radiative transition. It shows that the Tb~ (3+) /Eu~ (3+) ion Co doped Borate Glass has excellent fluorescence Wen Min. The absolute sensitivity is 0.0036K-1.5.Tb~ (3+) /Eu~ (3+) Co doped phosphate borate glass ceramics. The XRD atlas shows that the nanocrystals in glass ceramics are NaCaPO4. According to the xele formula and TEM analysis, the size of the crystal is estimated to be about 13nm. under 378nm excitation, and the emission light of Tb ~ (3+) /Eu~ (3+) ions Co doped Borate Glass Ceramics In the Yellow region, the luminescence properties can be regulated by changing the concentration of Eu~ (3+) ions. The energy transfer process of Tb~ (3+) to Eu~ (3+) is confirmed by the emission spectra and fluorescence attenuation results. The energy transfer process is mainly based on the temperature range emission spectra within the.293-573K temperature range in the form of resonance transfer of non radiative transition and cross relaxation transfer. Compared with Tb~ (3+) /Eu~ (3+) ions Co doped with phosphate borate glass, glass ceramics have more excellent fluorescence thermo sensitive properties. The maximum absolute sensitivity is 0.0066K-1, and the maximum relative sensitivity is 4.55%K-1..
【学位授予单位】:桂林电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ171.1
【参考文献】
相关期刊论文 前5条
1 王家鑫;陈国华;李旭琼;何志毅;袁昌来;杨会娟;杨云;;Ce/Tb/Mn共掺杂ZnO-SrO-P_2O_5玻璃陶瓷的制备与白光发射调控[J];中国有色金属学报;2014年06期
2 冯志庆;白兰;曹保胜;宫利东;董斌;;基于Er-Yb共掺杂硼硅酸盐玻璃的光学温度传感[J];中国科学:物理学 力学 天文学;2010年08期
3 李慧娟;邵起越;董岩;蒋建清;梁超;何锦华;;白光LED用YAG∶Ce~(3+)荧光粉的温度猝灭性质[J];发光学报;2008年06期
4 夏上达;;稀土发光和光谱理论的研究进展[J];发光学报;2007年04期
5 孟婕,赵丽娟,余华,唐莉勤,梁沁,禹宣伊,唐柏权,苏静,许京军;微晶结构对氟氧化物玻璃陶瓷发光特性的影响[J];物理学报;2005年03期
,本文编号:1976218
本文链接:https://www.wllwen.com/kejilunwen/huagong/1976218.html