六面顶压机关键零部件的仿真与检测研究
发布时间:2018-06-11 16:23
本文选题:六面顶压机 + 拓扑优化 ; 参考:《中国石油大学(华东)》2015年硕士论文
【摘要】:六面顶压机合成腔随设备的大型化不断扩大,直接影响着金刚石单晶合成设备的性能与消耗,因此高温高压合成条件下的铰链梁与顶锤等关键零部件研究,以及工作过程中的顶锤寿命在线跟踪与检测研究是压机大型化的热点与主要研究内容。为此本文基于ANSYS有限元分析软件与声发射检测仪开展压机关键零部件的仿真分析与声发射检测研究。文中根据铰链梁与顶锤结构尺寸,采用Pro/E与ANSYS分别建立三维实体模型与有限元模型,运用ANSYS的结构分析与拓扑优化分析模块完成铰链梁的结构与减重优化分析,得到铰链梁应力与位移分布,分析可知凸耳外侧边缘与缸底为易破坏位置且与现场铰链梁实际损坏位置相符。基于铰链梁有限元结构分析与拓扑优化分析结果,合理选择设计变量并建立其参数化有限元模型,采用参数优化与人工优化法完成铰链梁的结构参数优化设计,使其减重14.36%,得到铰链梁最优结构并通过结构与疲劳有限元分析验证了其有效性。结合实际工况条件确定顶锤载荷与边界条件,进行顶锤温度场与热-结构耦合场仿真计算,得到顶锤最高温度为194.875℃位于上表面中心位置呈中间高四周低的分布规律,耦合场载荷作用下顶锤顶面小斜面与边角位置出现最大米赛斯应力1510MPa和最大径向剪应力576MPa,此部位易发生开裂且与现场实际开裂位置相符。基于顶锤有限元分析结果与实际开裂位置,开展实验室与现场顶锤开裂声发射检测试验并采集相应声发射信号,得到顶锤材料硬质合金的最大费利西蒂比为0.035,运用关联分析、参数列表、小波与谱分析等手段进行声发射信号处理,确定顶锤开裂频率特征为频率值大于500KHz出现峰值且波峰幅值大于0.005V。基于开裂频率特征与实际生产需求,开发完成能够跟踪顶锤寿命监测顶锤开裂的声发射监测系统,并将此系统进行了现场测试,到目前为止,此套系统仍在现场测试,运行状态良好。
[Abstract]:With the enlargement of the equipment, the synthetic cavity of the six-sided press has a direct impact on the performance and consumption of the diamond single crystal synthesizer, so the key parts such as hinged beam and top hammer are studied under the condition of high temperature and high pressure synthesis. The online tracking and detection of the life of the top hammer in the working process is the hot spot and main research content of the press. Therefore, based on ANSYS finite element analysis software and acoustic emission detector, the simulation analysis and acoustic emission detection of key parts of press are carried out. According to the structure size of hinge beam and top hammer, the three-dimensional solid model and finite element model are established by Prop / E and ANSYS respectively, and the structure and weight loss optimization analysis of hinge beam is completed by using the structural analysis and topology optimization analysis module of ANSYS. The stress and displacement distribution of the hinge beam is obtained. The analysis shows that the lateral edge of the lug and the bottom of the cylinder are easily damaged and are consistent with the actual damage position of the hinge beam in the field. Based on the results of finite element structure analysis and topological optimization analysis of hinged beams, the design variables are reasonably selected and its parameterized finite element model is established, and the structural parameters optimization design of hinged beams is completed by means of parameter optimization and manual optimization. The optimum structure of hinged beam is obtained by reducing the weight by 14.366.The validity of the structure and fatigue finite element analysis is verified. Combined with the actual working conditions, the load and boundary conditions of the top hammer are determined, and the temperature field of the top hammer and the thermal-structure coupling field are simulated and calculated. The distribution law of the top hammer maximum temperature of 194.875 鈩,
本文编号:2005918
本文链接:https://www.wllwen.com/kejilunwen/huagong/2005918.html