双层旋流式高速塔水力学性能研究
发布时间:2018-07-10 11:51
本文选题:大通量 + 高速塔 ; 参考:《大连理工大学》2015年硕士论文
【摘要】:本文旨在提高塔设备的气相处理量,设计了一种新式板式塔结构,称之为高速塔。高速塔利用旋流接触元件内气体速度高和气液分离效率高的特性,将其移植到塔板上,并设计新式的进液通道,让液体直接进入叶片中心。液体从叶片出口流出后,立即与气体接触传质,并在气流的旋转作用下,实现离心分离。这种新式结构,改变传统的气液接触方式鼓泡式为喷射式,使气相保持为连续相与分散的液相接触。由于气液的接触传质与分离过程同时发生,塔板空间得到了充分利用。首先对单个旋流接触元件进行数值模拟分析,得到了旋流接触元件内部气相流场的一些特性:(1)轴向速度沿径向向外先减小后增大,这将导致气体的回流,使得气液能够反复接触传质;切向速度沿径向逐渐增大,最外侧切向速度达到最大;径向速度整体较小,这为气液提供了更充分的接触时间;(2)在旋流接触元件叶片出口中心产生的低压区和降液管液位静压的共同作用下,液体能够顺利进入旋流接触元件,并且,随着气相处理量的增大,降液管最低液位不断增大;旋流接触元件的总压降主要集中在叶片出口处。依据模拟结果,设计高速塔的具体结构,然后送加工厂进行械加工。在完成实验平台的搭建后,本文对高速塔的干床气相压降性能和湿床压降性能进行了实验研究,得到如下主要结论:(1)干床压降随气体处理量的增加而增大,各层塔板的压降由下至上逐级递减;(2)塔板湿床压降随气相流量的增大而显著增加,随液相处理量的增大而稍有增加;当气体处理量较小时,各级塔板的湿床压降大小相当,当气相处理量较大时,各级塔板的压降由下至上逐级递减。在此基础之上,本文进一步研究了高速塔的负荷性能,对高速塔的液泛、漏液和干板现象进行了实验研究,汇总气相流量和液相流量的操作范围,得到高速塔的负荷性能图,并得到以下结论:(1)随着液体流量的增加,液泛气速逐渐减小,但是漏液气速基本保持不变,液体流量下限稳定在较低水平,上限随着气体处理量的增加,稍有减小;(2)高速塔的气相处理能力较传统的筛板塔提高45.5%,最高液泛气速可达到2m/s,气体操作速度的范围最大可达到1.1-2.05m/s。
[Abstract]:In order to improve the gas processing capacity of tower equipment, a new type of plate tower is designed, which is called high speed tower. The high-speed tower uses the characteristics of high gas velocity and high gas-liquid separation efficiency in the swirl contact element to transplant it onto the tray and design a new liquid inlet channel to allow the liquid to enter directly into the center of the blade. After the liquid is discharged from the blade outlet, it is immediately in contact with the gas to transfer mass, and the centrifugal separation is realized under the action of air flow rotation. This new structure changes the traditional gas-liquid contact method from bubbling to jet and keeps the gas phase in continuous liquid contact with dispersed liquid phase. Due to the simultaneous occurrence of gas-liquid contact mass transfer and separation process, the tray space is fully utilized. Firstly, the numerical simulation of a single swirl contact element is carried out, and some characteristics of the gas flow field are obtained: (1) the axial velocity decreases first along the radial direction and then increases, which will lead to the reflux of the gas. The tangential velocity increases gradually along the radial direction and reaches the maximum at the outermost side. The overall radial velocity is small, which provides a more adequate contact time for the gas and liquid. (2) under the combined action of the low pressure region at the outlet center of the vortex contact element and the hydrostatic pressure of the down-flow pipe, the liquid can enter the swirl contact element smoothly, and the minimum liquid level of the down-flow tube increases with the increase of the gas phase treatment capacity; The total pressure drop of the swirl contact element is mainly concentrated at the outlet of the blade. According to the simulation results, the concrete structure of the high-speed tower is designed and then sent to the processing plant for mechanical processing. After the construction of the experimental platform, the dry bed gas phase pressure drop and wet bed pressure drop performance of high speed tower are studied experimentally. The main conclusions are as follows: (1) the dry bed pressure drop increases with the increase of gas treatment capacity. (2) the pressure drop of wet bed increases significantly with the increase of gas flow rate, and slightly increases with the increase of liquid treatment capacity, and the wet bed pressure drop of different trays is similar when the gas treatment capacity is small. When the gas phase processing capacity is large, the pressure drop of all levels of trays decreases gradually from the bottom to the top. On this basis, the load performance of the high speed tower is further studied, the liquid flooding, leakage and dry plate phenomena of the high speed tower are studied experimentally, the operating range of the gas and liquid flow is summarized, and the load performance diagram of the high speed tower is obtained. The following conclusions are obtained: (1) with the increase of the liquid flow rate, the flooding gas velocity decreases gradually, but the leakage gas velocity basically remains the same, the lower limit of liquid flow is stable at a lower level, and the upper limit decreases slightly with the increase of gas treatment capacity; (2) compared with the traditional sieve tray column, the gas treatment capacity of the high speed column is increased by 45. 5%, the maximum liquid gas velocity can reach 2 m / s, and the maximum operating velocity of gas can reach to 1. 1-2. 05 m / s.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ053.5
【参考文献】
相关期刊论文 前6条
1 浙江大学化工原理教研组;旋流板技术及其应用[J];化学工程;1978年02期
2 路秀林,刘玉民;网孔塔板设计[J];化学工程;1981年04期
3 杜佩衡;杜剑婷;;喷射型立体传质塔板在饱和热水塔中的应用[J];化学工程;2007年04期
4 俞晓梅,徐崇嗣,朱锦忠;MD型塔板及其改进型的研究和应用[J];全面腐蚀控制;1994年04期
5 刘家斌;;F_1浮阀塔盘与T形排列条形浮阀塔盘的对比[J];石油化工设备技术;1987年05期
6 杨权;Giuseppe Mosca;Mario Roza;;使用惰性分离技术的塔盘特性(英文)[J];Chinese Journal of Chemical Engineering;2010年06期
相关会议论文 前1条
1 吕建华;张文林;刘继东;李春利;李柏春;;立体传质塔板(CTST)水力学性能与吸收塔的应用[A];2005年全国塔器及塔内件技术研讨会会议论文集[C];2005年
,本文编号:2113311
本文链接:https://www.wllwen.com/kejilunwen/huagong/2113311.html