立体传质塔板罩外空间气液相流场的研究
[Abstract]:As a new type of tower plate, the cap cover structure of CTST is a unique trapezoid structure, which changes the plane pattern of the traditional tray with the liquid layer on the plate as the main mass transfer area. It extends the gas and liquid mass transfer area to the tray stereoscopic space, and achieves the effect of large capacity expansion and efficiency, energy saving and consumption reduction, and obtained the industrial application. Good economic benefits. The researchers have modeled and simulated the different characteristics of the two phase flow in the cap cap of the stereoscopic mass transfer tray (CTST), and obtained the characteristics of the liquid film flow and the distribution law of the droplets, but there is no research on the gas-liquid two-phase flow in the outer space. Therefore, this paper is based on the three-dimensional mass transfer tray. The gas phase distribution and droplet size distribution in the outer space of (CTST) cap are studied. It provides a theoretical basis for further improvement and optimization of the tray. In this paper, a mathematical model of gas phase distribution and droplet size distribution in the outer space flow field of a stereoscopic mass transfer tray (CTST) cover is established. In addition, the model is simulated with a particle orbit model. At the same time, the force of the liquid, the weight of the droplet and the virtual mass force are considered, and the random orbit model is used to calculate the turbulent diffusion of the droplets. The mathematical models have the following several characteristics: (1) the gas phase distribution and droplets of the outer space of the stereoscopic mass transfer tray (CTST) cover The particle size distribution is analyzed in detail. A mathematical model is established to accurately describe the distribution of gas phase and droplet size. (2) the RNG k- e turbulence model is adopted because of the special structure of the solid mass transfer tray (CTST) jet cover, and the droplet distribution in the outer space uses random orbits. The model is simulated. The establishment of the model is more accurate to describe the flow situation outside the cover. Thirdly, the particle size distribution of the droplets is considered for the droplet collision, breakage and aggregation, so that the simulation results can describe the state of the droplet more accurately. The method is the finite volume method, the difference scheme is two order upwind scheme, and the velocity pressure correlation algorithm uses the SIMPLE algorithm. The liquid phase flow field of the three-dimensional mass transfer tray (CTST) cover is experimentally studied. The gas phase velocity distribution in the outer flow field of the solid mass transfer tray (CTST) cover is measured by the thermal film velocimeter measurement system and the high-speed camera technology. The particle size distribution of the droplet was experimentally studied. The jet gas velocity, liquid flow rate, jet cone angle, droplet distribution density, droplet velocity distribution density and liquid film velocity were studied. The experimental results were analyzed. The change law of the velocity of the jet hole gas velocity with the plate hole kinetic energy factor and the velocity of the droplet were obtained. Two intervals of the height of the cloth, namely, [5, 20] and [40, 50 degrees. The mathematical model is simulated by the Fluent software of computational fluid dynamics, and the distribution of the gas phase distribution in the outer space and the distribution of the droplet size are obtained. In the theoretical calculation, the content covers the numerical simulation process, including the calculated turbulence model, the calculation method and the difference lattice. According to the results, the influence factors of the particle size distribution of the solid mass transfer tray (CTST) can be summed up as gas velocity, the height of the liquid layer, the cover type and the physical property of the liquid. In addition, the study of the droplet size distribution shows that the droplets with the diameter less than 2mm under the injection condition are shown. The size distribution of the droplets is more suitable for the upper bound logarithmic normal distribution function. Finally, the experimental results are compared with the model calculation results. The results show that the experimental values of the air flow in the outer space of the stereoscopic mass transfer tray (CTST) cover are in agreement with the theoretical values, and the theoretical model is proved. Correctness. Through the study of the related injection performance of the stereoscopic mass transfer tray (CTST), the change law of the gas velocity with the plate hole kinetic energy factor is obtained, and the main factors affecting the liquid film velocity are the conclusion of the gas velocity of the jet hole and the position of the liquid film on the jet hole.
【学位授予单位】:河北工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TQ053.5
【相似文献】
相关期刊论文 前10条
1 刘继东;刘德新;李春利;张凤宝;;立体传质塔板罩内的气相速度分布[J];化学工程;2006年12期
2 刘继东;李春利;王志英;张凤宝;;立体传质塔板相对液体提升量的计算[J];高校化学工程学报;2007年01期
3 曹铭武;立体传质塔板在乙酸甲酯精馏技改中的应用[J];化工进展;2001年11期
4 丁书兵,张云杉,刘敏,薄慕涛,樊秋荣;采用立体传质塔板对催化分馏塔扩量改造[J];山东化工;2002年05期
5 张文林,李柏春,吕建华,李春利;立体传质塔板在气体分馏装置的应用[J];炼油技术与工程;2003年11期
6 刘继东,李春利,李柏春,吕建华;新型立体传质塔板罩内压力分布和气液提升机理的研究[J];化学工程;2004年01期
7 吕建华,魏治中,缪西平,赵秋燕,兰创宏;立体传质塔板在常压蒸馏装置扩能改造中的应用[J];石油和化工设备;2005年03期
8 张文林;吕建华;李柏春;李春利;;立体传质塔板在常压蒸馏装置扩改中的应用[J];天然气化工;2005年06期
9 王志英;李春利;刘继东;孙玉春;;立体传质塔板板上液相速度场的实验研究[J];化学工程;2009年03期
10 王志英;刘启东;刘继东;李春利;;立体传质塔板帽罩空间浓度分布[J];天津大学学报;2010年03期
相关会议论文 前10条
1 李春利;刘长江;张淑玲;李建慈;李彦芬;;导向立体传质塔板的液体提升能力研究[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
2 李春利;李建慈;刘继东;刘德新;;立体传质塔板罩内气相速度分布的研究[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
3 李春利;李建慈;刘继东;张仂;;立体传质塔板罩内压降理论关系式的研究[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
4 李春利;吕建华;刘景华;李柏春;;新型双层喷射立体传质塔板在催化裂化装置各塔的应用[A];第二届全国塔器及塔内件技术研讨会会议论文集[C];2007年
5 李春利;;新型立体传质塔板的研究与开发进展[A];2005年全国塔器及塔内件技术研讨会会议论文集[C];2005年
6 魏建;;立式喷射蒸馏塔在溶媒回收生产上的应用[A];2008年中国药学会学术年会暨第八届中国药师周论文集[C];2008年
7 吕建华;张文林;刘继东;李春利;李柏春;;立体传质塔板(CTST)水力学性能与吸收塔的应用[A];2005年全国塔器及塔内件技术研讨会会议论文集[C];2005年
8 刘启东;王志英;李春利;王朝辉;;立体传质塔板CTST板上清液层高度的研究[A];第二届全国传递过程学术研讨会论文集[C];2003年
9 吕建华;刘继东;张文林;李春利;李柏春;;立体传质塔板CTST技术及其在炼油装置中的应用[A];2006年石油和化工行业节能技术研讨会会议论文集[C];2006年
10 李春利;李建慈;;导向立体传质塔板罩内两相流的CFD模拟[A];第二届全国塔器及塔内件技术研讨会会议论文集[C];2007年
相关重要报纸文章 前1条
1 王红;立体传质塔板获多项国家专利[N];中国化工报;2003年
相关博士学位论文 前2条
1 贺亮;立体传质塔板罩外空间气液相流场的研究[D];河北工业大学;2015年
2 刘继东;立体传质塔板罩内气液两相流动及传质过程的研究[D];天津大学;2008年
相关硕士学位论文 前9条
1 王志英;立体传质塔板板上液相流动性能的研究[D];河北工业大学;2002年
2 孙玉春;立体传质塔板板上液相流场的三维模拟研究[D];河北工业大学;2005年
3 刘德新;立体传质塔板CTST罩内气相速度分布的研究[D];河北工业大学;2005年
4 陈华艳;立体传质塔板CTST液体提升机理的研究[D];河北工业大学;2003年
5 刘启东;立体传质塔板CTST罩内外浓度分布及传质性能的研究[D];河北工业大学;2004年
6 刘长江;板上充气状态下立体传质塔板CTST的液体提升量研究[D];河北工业大学;2007年
7 李建慈;立体传质塔板CTST分离板上方气相速度分布的研究[D];河北工业大学;2007年
8 张力明;基于正交试验与FLUENT的立体传质塔板帽罩分析及优化[D];西南石油大学;2014年
9 郑松章;大型双溢流立体传质塔板CTST板上液相流场的CFD研究[D];河北工业大学;2011年
,本文编号:2166080
本文链接:https://www.wllwen.com/kejilunwen/huagong/2166080.html