污染膜清洗条件优化及清洗动力学模型的建立
[Abstract]:Membrane technology has been widely used in various industrial fields because of its advantages such as simple operation, high efficiency, energy saving and environmental protection, small occupation area and so on. However, membrane fouling is inevitable in the process of membrane separation, and membrane cleaning is a direct method to solve this problem. In this paper, the method of combination of hydraulic precleaning and chemical cleaning is adopted for the microfiltration membrane fouled in membrane bioreactor (MBR), the corresponding kinetic model is established, and the different operating conditions (temperature, operating pressure) are calculated. The effect of stirring speed on the model parameters. In addition, the polysulfone membrane deposited in the special equipment was cleaned by the method of ultrasonic cleaning and chemical cleaning. The conclusions are as follows: (1) for the cleaning process of contaminated membrane in MBR, the cleaning effect of sodium 1 chlorite is the best, followed by sodium dodecyl sulfonate and sodium hydroxide; (2) the flux recovery rate of the membrane increased firstly with the increase of the concentration of cleaning agent, and then tended to stabilize with the increase of cleaning time. The flux recovery rate of the membrane increased with the increase of the cleaning time, and then the flux recovery rate of the membrane tended to increase with the increase of the temperature. (5) the flux recovery rate of the membrane decreases with the increase of the operating pressure, and the flux recovery rate of the membrane increases slightly with the increase of the stirring speed. The best way to clean it is to do it without pressure, The cleaning temperature of 0.5 wt% sodium hypochlorite for 15 min, can be selected according to the actual situation. (2) for the cleaning process of polysulfone membrane contaminated by dust and oily substances, the flux recovery rate of the 1 / 1 membrane is with ultrasonic electrolysis. The increase of flow; 2 the flux recovery rate of the membrane increases with the increase of ultrasonic time. When the cleaning conditions of citric acid are constant, the flux recovery rate increases firstly and then decreases with the increase of sodium hypochlorite concentration. The cleaning effect of sodium hypochlorite was the best when the mass concentration of sodium hypochlorite was 0.3.When the cleaning conditions of sodium hypochlorite were constant, with the increase of citric acid concentration, The change of flux recovery rate was not regular. The cleaning effect of sodium hypochlorite (0.3 wt%) and citric acid (15 wt%) on the fouled membrane was better than that on the first alkali and then the acid. (5) the cleaning effect of ultrasonic cleaning and chemical cleaning is better than that of ultrasonic cleaning and chemical cleaning. (3) based on the Hom-Haas model, the kinetic model of chemical cleaning is proposed. The model describes the relationship between flux recovery rate and cleaning time and concentration during chemical cleaning. Theoretical analysis shows that the model is feasible. When the model is applied to the chemical cleaning process of MBR contaminated membrane, the conclusion can be drawn as follows: the model can accurately describe the flux recovery rate of sodium hypochlorite cleaning process with the cleaning time and the concentration of cleaning agent. The validity of the model is further proved by comparing the predicted values with the new experimental data. In addition, the contribution rate of each operating condition to the predicted value of the model is analyzed by linear regression analysis. The results show that the model parameter MN is only related to the operating pressure and temperature, while the rate constant k is determined by the operating pressure, temperature and stirring speed. The model can accurately describe the cleaning process of sodium hydroxide and sodium dodecyl sulfonate. In addition, the contribution rate of each operating condition to the predicted value of the model is analyzed by linear regression analysis.
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ051.893
【共引文献】
相关期刊论文 前10条
1 王玫瑰;谭寿再;孙永红;;正交实验法研制MC尼龙/纳米CaCO_3/石墨复合材料[J];工程塑料应用;2007年11期
2 叶晓;姚金苗;王湛;刘兴春;刘德忠;张虎;李兆辉;;多元线性回归模型在死端微滤比阻中的应用[J];北京工业大学学报;2007年11期
3 王湛;姚金苗;叶晓;储金树;崔彦杰;梁艳莉;张虎;赵新奇;李兆辉;;操作条件对超滤姬松茸多糖的影响[J];北京工业大学学报;2008年10期
4 任斐;;使用Excel进行有交互作用的正交设计方差分析[J];电脑知识与技术;2010年21期
5 李芸;苏晗;;改性粉煤灰对生活污水磷的吸附研究[J];能源与环境;2008年01期
6 宋丽;张传亮;;气力输灰系统的改造和应用[J];能源与环境;2008年02期
7 黄勤雨;王中来;阮志农;管栋印;杨佳伟;;介质阻挡放电冷电弧脱色的研究[J];高电压技术;2007年02期
8 林叶新;李忠海;;林檎叶防腐保鲜成分微波提取工艺的优化研究[J];化工技术与开发;2012年03期
9 叶枫;曹北平;;流体阻力摩擦系数关联式的比较与改进[J];广州化工;2009年02期
10 黄钦;;Origin软件在物理化学实验数据处理中的应用[J];广州化工;2012年11期
相关博士学位论文 前4条
1 池勇志;微波结合碱解预处理改善剩余污泥厌氧消化效能的研究[D];天津大学;2010年
2 蒋培文;公路大跨径连续体系桥梁车桥耦合振动研究[D];长安大学;2012年
3 李如燕;废弃物资源化[D];上海交通大学;2007年
4 肖入峰;反渗透膜系统处理维生素C凝结水试验研究[D];西南交通大学;2012年
相关硕士学位论文 前10条
1 朱平;超临界两步法制备生物柴油的数值模拟研究[D];昆明理工大学;2009年
2 李海鹏;天津第二化工厂污水处理项目的设计及应用[D];天津大学;2012年
3 果栋;四砧拔长中心压实工艺参数研究[D];燕山大学;2012年
4 王琳;涡旋波膜生物反应器COD降解与传质的耦合研究[D];大连理工大学;2006年
5 范理;5-氨基乙酰丙酸的检测方法及其稳定性研究[D];浙江大学;2006年
6 李健;内置铝制自旋扭带换热管工作特性实验研究[D];广西大学;2006年
7 崔瑞芳;电动势法测定铷、铯氯化物在脂肪醇—水混合溶剂体系中的热力学性质[D];陕西师范大学;2007年
8 高飞;连续反应精馏生产丁酸酐的工艺开发[D];青岛科技大学;2007年
9 储金树;死端微滤过程运行条件的优化及膜通量的预测研究[D];北京工业大学;2008年
10 毕庆华;氧化铝生产四效逆流降膜式蒸发过程出口浓度预测模型研究[D];中南大学;2008年
,本文编号:2201216
本文链接:https://www.wllwen.com/kejilunwen/huagong/2201216.html