基于压电陶瓷的摩擦可调粘滑定位平台
发布时间:2018-10-18 18:30
【摘要】:为了提高粘滑式纳米定位台对不同负载,尤其是大质量负载的适用性,设计了驱动模块化的粘滑定位平台。将质量块、柔性铰链及铰链架一体制造,将压电陶瓷致动器、预紧垫块及预紧螺钉安装在铰链架上,共同组成一个独立的驱动模块,安装在底座的槽内,在调节螺钉的作用下可调整垂直方向的位置,改变与载物台接触面间的摩擦力。对粘滑驱动平台建立动力学模型并进行仿真分析,研究摩擦力对平台性能的影响。实验结果表明,负载200g时,平台的最小步长为8.84nm,最大速度为3.727mm/s,行程约20mm;2kg负载下,未调节摩擦时最大速度为2.373mm/s,调节摩擦力后最大速度为3.063mm/s。实验证明,该设计能同时满足小尺寸、高精度、高速度、大行程及适应大负载的要求。
[Abstract]:In order to improve the applicability of stick-slip nano-positioning platform to different loads, especially to large mass loads, a fuel-slip positioning platform driven by modularization was designed. A mass block, a flexure hinge and a hinge frame are made, and piezoelectric ceramic actuators, pretightening pads and pretightening screws are mounted on the hinge frame to form an independent driving module, which is installed in the slot of the base. Under the action of adjusting screw, the vertical position can be adjusted to change the friction between the contact surface and the platform. The dynamic model of viscous slip driving platform is established and simulated to study the influence of friction force on the performance of the platform. The experimental results show that when the load is 200 g, the minimum step length is 8.84 nm, the maximum velocity is 3.727 mm / s, the maximum velocity is 2.373 mm / s when the friction is unadjusted and the maximum velocity is 3.063 mm / s after adjusting the friction force. Experiments show that the design can meet the requirements of small size, high precision, high speed, large stroke and large load.
【作者单位】: 苏州大学江苏省先进机器人技术重点实验室&苏州纳米科技协同创新中心;
【基金】:国家重大科研仪器设备研制专项基金资助项目(61327811) 苏州市科学发展计划纳米技术专项基金资助项目(ZXG201433)
【分类号】:TH703;TQ174.75
本文编号:2280000
[Abstract]:In order to improve the applicability of stick-slip nano-positioning platform to different loads, especially to large mass loads, a fuel-slip positioning platform driven by modularization was designed. A mass block, a flexure hinge and a hinge frame are made, and piezoelectric ceramic actuators, pretightening pads and pretightening screws are mounted on the hinge frame to form an independent driving module, which is installed in the slot of the base. Under the action of adjusting screw, the vertical position can be adjusted to change the friction between the contact surface and the platform. The dynamic model of viscous slip driving platform is established and simulated to study the influence of friction force on the performance of the platform. The experimental results show that when the load is 200 g, the minimum step length is 8.84 nm, the maximum velocity is 3.727 mm / s, the maximum velocity is 2.373 mm / s when the friction is unadjusted and the maximum velocity is 3.063 mm / s after adjusting the friction force. Experiments show that the design can meet the requirements of small size, high precision, high speed, large stroke and large load.
【作者单位】: 苏州大学江苏省先进机器人技术重点实验室&苏州纳米科技协同创新中心;
【基金】:国家重大科研仪器设备研制专项基金资助项目(61327811) 苏州市科学发展计划纳米技术专项基金资助项目(ZXG201433)
【分类号】:TH703;TQ174.75
【相似文献】
相关硕士学位论文 前3条
1 郭瑶仙;大应变PSN-PNN-PZT压电陶瓷的制备与性能研究[D];天津大学;2016年
2 朱军辉;全压电驱动的二维大行程纳米定位平台研究[D];苏州大学;2015年
3 吴春婷;压电陶瓷微定位平台的迟滞补偿控制方法研究[D];吉林大学;2016年
,本文编号:2280000
本文链接:https://www.wllwen.com/kejilunwen/huagong/2280000.html