当前位置:主页 > 科技论文 > 化工论文 >

基于双化学链燃烧耦合蒸汽重整的天然气氢电联产工艺研究

发布时间:2018-11-20 07:45
【摘要】:天然气的高效清洁利用是各国优化能源结构的重要措施。氢能与电能的制备是实现天然气清洁利用的重要方式,但传统制氢工艺能耗高,燃烧发电系统热能损失严重。基于"品位对口,梯级利用"的原则,将燃烧效率高、CO2捕集零能耗的化学链燃烧发电技术与制氢产率大、CO2吸收率高的蒸汽强化重整制氢技术进行耦合,利用高压、低压化学链系统的多余热能为制氢系统中重整制氢和吸收再生环节供能,提出了以天然气为原料的双化学链燃烧耦合蒸汽重整氢电联产工艺并进行了研究。采用Aspen Plus对以天然气为进料的化学链燃烧发电工艺、蒸汽强化重整制氢工艺、化学链燃烧耦合蒸汽重整氢电联产工艺(单级耦合)、双化学链燃烧耦合蒸汽重整氢电联产工艺(双级耦合)进行模拟,并分析主要操作参数如C02吸收剂CaO与天然气制氢进料的摩尔进料比、水蒸气与天然气制氢进料的摩尔比、单级耦合系统中天然气分别作燃料与制氢进料的分配比,以及双级耦合系统中天然气分别供应给高压化学链系统与低压化学链系统作燃料与作制氢进料的摩尔比等,对系统性能(氢气产率、产品组成、发电量等)的影响,并在此基础上实现工艺的优化。基于热力学第一定律和热力学第二定律,得出:化学链燃烧发电工艺能量效率为55.79%,(火用)效率37.89%,(火用)损率为45.30%。蒸汽强化重整制氢工艺氢气产率为65%,氢气收率为15%,能量效率为23.52%,(火用)效率为89.18%,(火用)损率为15.82%。化学链燃烧耦合蒸汽重整氢电联产系统氢气产率为89%,氢气收率为17%,能量效率为57.86%,(火用)效率为67.04%,(火用)损率为29.34%;双化学链燃烧耦合蒸汽重整氢电联产系统氢气产率达92%,氢气收率为18%,能量效率为66.50%,(火用)效率为72.72%,(火用)损率为23.61%。
[Abstract]:The efficient and clean utilization of natural gas is an important measure to optimize energy structure in various countries. The preparation of hydrogen energy and electric energy is an important way to realize the clean utilization of natural gas, but the energy consumption of traditional hydrogen production process is high, and the thermal energy loss of combustion power generation system is serious. Based on the principle of "grade matching, cascade utilization", the chemical chain combustion power generation technology with high combustion efficiency and zero energy consumption by CO2 is coupled with the steam enhanced reforming hydrogen production technology with high hydrogen production rate and high CO2 absorptivity. The superfluous heat energy of low pressure chemical chain system is the energy supply of reforming hydrogen production and absorbing regeneration in hydrogen production system. The hydrogen electricity cogeneration process of double chemical chain combustion coupled steam reforming with natural gas as raw material is proposed and studied. The chemical chain combustion power generation process with natural gas as feedstock, steam enhanced reforming hydrogen production process, chemical chain combustion coupled steam reforming hydrogen electricity cogeneration process (single stage coupling) were adopted in this paper. Double chemical chain combustion coupled steam reforming hydrogen electricity cogeneration process (double stage coupling) is simulated, and the main operating parameters such as the molar feed ratio of CO2 absorbent CaO and natural gas hydrogen feed, the molar ratio of water vapor to natural gas hydrogen feed are analyzed. The distribution ratio of natural gas as fuel and hydrogen feedstock in single-stage coupling system, and the molar ratio of natural gas supplied to high-pressure chemical chain system and low-pressure chemical chain system to hydrogen production feed respectively in two-stage coupling system, etc. The effect on system performance (hydrogen yield, product composition, power generation etc.) and process optimization. Based on the first law of thermodynamics and the second law of thermodynamics, it is concluded that the energy efficiency of the chemical chain combustion power generation process is 55.79, the exergy efficiency is 37.89 and the exergy loss rate is 45.30. The hydrogen yield, energy efficiency, exergy efficiency and exergy loss rate of steam enhanced reforming process are 65, 15, 23.52, 89.18 and 15.82, respectively. The hydrogen yield, energy efficiency, exergy loss rate and exergy rate of the combined hydrogen production system are 89, 17, 57.86, 67.04 and 29.34, respectively. The hydrogen yield, energy efficiency, exergy loss rate and exergy loss rate of the hydrogen production system are 92, 18, 66.50, 72.72 and 23.61, respectively.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ116.2

【参考文献】

相关期刊论文 前2条

1 金红光,洪慧,王宝群,韩巍,林汝谋;化学能与物理能综合梯级利用原理[J];中国科学E辑:工程科学 材料科学;2005年03期

2 王勤辉,沈洵,骆仲泱,岑可法;新型近零排放煤气化燃烧利用系统[J];动力工程;2003年05期

相关博士学位论文 前2条

1 张海龙;中国新能源发展研究[D];吉林大学;2014年

2 戚峰;生物质高效水解及发酵产氢的机理研究[D];浙江大学;2007年

相关硕士学位论文 前2条

1 范峻铭;基于化学链燃烧热耦合蒸汽强化重整氢电联产系统研究[D];西南石油大学;2015年

2 牛娇;制氢技术的系统评价体系研究[D];北京化工大学;2007年



本文编号:2344296

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huagong/2344296.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1dc72***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com