多目标优化算法及其在化工中的应用研究
[Abstract]:Multi-objective optimization algorithm is widely used in chemical engineering fields, such as process control and operation optimization, chemical equipment design, environmental engineering and so on. In recent years, more and more scholars combine multi-objective optimization algorithm with process simulator to solve chemical optimization problem. Because the process simulation takes a lot of time to calculate convergence, the optimization algorithm must be able to achieve convergence quickly with less evaluation times of objective function. The non-dominated genetic algorithm is the most widely used algorithm in the field of multi-objective optimization, but it must pass through tens of thousands of objective function evaluation to get a better result, and its own shortcomings such as easy premature convergence, weak local search ability and so on. Therefore, this paper proposes an efficient multi-objective optimization algorithm and applies it to the optimization of chemical processes. The main work of this paper is as follows: (1) the research background and significance of multi-objective optimization algorithm are expounded, and the development of multi-objective evolutionary algorithm is introduced from two aspects: scientific research and engineering application. The research and application of queue competition algorithm are briefly introduced. (2) the concept and definition of multi-objective optimization problem are introduced, the calculation flow and key operators of LCA and NSGA-II are described in detail, and the evaluation index of convergence and uniformity of solution set is introduced. (3) A multi-objective queue competition algorithm (MOLCA,) is proposed, which adopts many strategies to reduce the number of evaluation of the objective function and achieve rapid convergence. The setting of the main parameters of MOLCA is discussed, and then the classical test function is used to test and analyze the MOLCA. Compared with NSGA-II, this method performs better than NSGA-II. MOLCA was applied to the optimization of the operation parameters of the main fractionator of FCC. With the total economic benefit and the energy consumption of the system as the two objectives, the optimized operation scheme was given. (4) in view of the problem that NSGA-II is easy to converge to the local optimal solution and the computation time is long, a hybrid algorithm MOLCA-NSGA-II. based on multi-objective queue competition algorithm and non-dominated genetic algorithm is proposed. The test results of classical test function show that the algorithm is superior to NSGA-II. in computing time, convergence and distribution. MOLCA-NSGA-II was applied to the optimization of the separation process of methanol to olefin. A series of optimal solutions of Pareto were given. According to different production requirements, energy consumption and yield could be considered synthetically, and suitable operating conditions could be selected.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ015.9
【参考文献】
相关期刊论文 前10条
1 吴勇;程明;项敏建;;基于NSGA-Ⅱ的催化裂化分馏塔的多目标优化[J];计算机测量与控制;2015年01期
2 龙爱伟;;多目标优化在化工领域中的应用进展[J];广东化工;2014年21期
3 周草臣;陈自郁;何中市;;高维多目标优化算法分析研究[J];计算机科学;2014年S1期
4 郑金华;赖念;郭观七;;多目标进化算法中基于角度偏好的ε-Pareto支配策略[J];模式识别与人工智能;2014年06期
5 施辰斐;赵霞;邵惠鹤;;甲醇四塔精馏系统的多目标优化[J];石油化工自动化;2013年06期
6 付博;裴军;陈玉石;钱学勤;陈韶辉;;芳烃液液抽提过程模拟和优化研究[J];计算机与应用化学;2013年11期
7 敦剑;冯霄;何畅;王东亮;;煤制天然气酚氨废水汽提过程经济和环境多目标优化[J];化工学报;2013年12期
8 张宇;鄢烈祥;李国建;史彬;;非支配排序进化策略求解煤气化多目标优化问题[J];化工学报;2013年12期
9 李建隆;娄晓燕;刘颖;王宇光;;MTO产品分离工艺的模拟与优化[J];计算机与应用化学;2013年05期
10 周建淞;陈益;张晓丽;韩荣荣;仇丽霞;武俊青;;基于向量评估遗传算法的多目标优化效果评价及程序测试[J];中国卫生统计;2012年02期
相关博士学位论文 前1条
1 杨娟;煤炭矿区节能减排多目标优化决策研究[D];中国地质大学;2014年
相关硕士学位论文 前6条
1 詹雪兰;催化裂化主分馏塔和吸收稳定系统的全流程模拟与优化[D];华东理工大学;2014年
2 王康;多目标进化算法解集分布性评价指标及其应用[D];湘潭大学;2013年
3 伍思敏;多目标粒子群优化算法的改进及应用研究[D];江南大学;2013年
4 刘楠楠;基于进化算法的多目标优化算法及应用研究[D];南京航空航天大学;2010年
5 汪采萍;蚁群算法的应用研究[D];合肥工业大学;2007年
6 曾威;多目标进化算法及其在约束优化中的应用研究[D];中南大学;2007年
,本文编号:2395174
本文链接:https://www.wllwen.com/kejilunwen/huagong/2395174.html