Cu、Zn前体性质对完全液相法制Cu-Zn-Al催化剂结构及CO加氢催化性能的影响
本文选题:完全液相法 切入点:铜锌铝催化剂 出处:《石油学报(石油加工)》2017年02期
【摘要】:以氨水为铜、锌盐的络合剂,采用完全液相法制备Cu-Zn-Al催化剂,采用XRD、H_2程序升温还原、N_2吸附-脱附和X射线光电子能谱等手段对催化剂进行表征,并采用浆态床反应器评价催化剂的CO加氢性能,考察Cu、Zn前体性质对催化剂结构及性能的影响。结果表明,以Cu(NH3)_4~(2+)或(和)Zn(NH3)2+4前体形式制备Cu-Zn-Al催化剂,Cu晶粒尺寸由45.9nm减小到了34.4nm,同时抑制Cu氧化物的还原;表面Cu含量(摩尔分数)由0.73%提高到了2.18%,Al含量(摩尔分数)由11.62%提高到了20.46%,增加了催化剂表面酸强度和酸量,从而提高了催化剂的CO加氢活性,改变了产物分布。
[Abstract]:The Cu-Zn-Al catalyst was prepared by complete liquid phase method using ammonia water as the complexing agent of copper and zinc salt. The catalyst was characterized by XRDX H2 temperature programmed reduction, adsorption, desorption and X-ray photoelectron spectroscopy.The catalytic performance of CO hydrogenation was evaluated by slurry bed reactor, and the effect of Cu-Zn precursor properties on the structure and performance of the catalyst was investigated.The results show that the Cu grain size of Cu-Zn-Al catalyst prepared in the form of Cu(NH3)_4~(2) or / or (and) ZnN NH _ 3N _ (24) precursor decreases from 45.9nm to 34.4 nm, and the reduction of Cu oxide is inhibited at the same time.The surface Cu content (molar fraction) increased from 0.73% to 2.18% Al content (mole fraction) increased from 11.62% to 20.46%, increased the surface acid strength and acid content of the catalyst, thus increased the CO hydrogenation activity of the catalyst and changed the product distribution.
【作者单位】: 太原理工大学化学化工学院;太原理工大学煤科学与技术教育部和山西省重点实验室;
【基金】:国家自然科学基金重点项目(21336006) 煤基产业节能减排的关键技术研发与示范项目(2013BAC14B04)资助
【分类号】:O643.36
【相似文献】
相关期刊论文 前10条
1 龚惠娟,陈泽智;车用尾气催化剂催化特性的模拟[J];计算机与应用化学;2000年05期
2 陈泽智,陶建幸,龚惠娟;车用尾气催化剂工作性能的模拟与分析方法[J];计算机与应用化学;2001年Z1期
3 王嵩;毛东森;吴贵升;郭晓明;卢冠忠;;铜/氧化锆催化剂的制备及应用研究进展[J];化工进展;2008年06期
4 赵海;张德祥;高晋生;;稀土掺杂铁锰脱硝催化剂的制备及其性能研究[J];煤炭转化;2011年04期
5 ;轻油制氢烧结型催化剂降低煅烧温度和催化剂中镍含量初步研究[J];胜利石油化工;1976年03期
6 秦永宁;烃类水蒸汽转化制氢催化剂初步设计[J];天津大学学报;1978年02期
7 南化公司研究院二室钒催化剂组;美国进口硫酸钒催化剂剖析报告[J];硫酸工业;1979年02期
8 刘金香;高秀英;;热重法用于天然气蒸汽转化催化剂的筛选和还原条件的考察[J];石油化工;1980年07期
9 杨孔章;刘传朴;;氢气脉冲色谱法测定催化剂中镍表面积[J];石油化工;1980年10期
10 李树本;;多组份钼酸盐催化剂丙烯氨氧化性能的研究[J];石油化工;1981年07期
相关会议论文 前10条
1 李文鹏;徐显明;郁向民;李方伟;裴皓天;李影辉;;天然气二段蒸汽转化催化剂的分析表征[A];第四届全国工业催化技术及应用年会论文集[C];2007年
2 汪国军;吴粮华;陈欣;谢在库;;丙烯腈新型催化剂研制[A];第十三届全国催化学术会议论文集[C];2006年
3 郑俊娴;王远洋;;相催化剂微粒聚集分维特征的模拟研究[A];第七届全国催化剂制备科学与技术研讨会论文集[C];2009年
4 周晓奇;李速延;;变换催化剂的现状及其发展趋势[A];第2届全国工业催化技术及应用年会论文集[C];2005年
5 张鸿喜;吴君璧;宋美婷;李海涛;亢丽娜;赵永祥;;水热条件下Ni/La_2O_3-SiO_2-Al_2O_3催化剂结构演变[A];第十届全国工业催化技术及应用年会论文集[C];2013年
6 欧阳平;姚金华;陈国需;李华峰;;摩擦催化反应中机械摩擦作用对催化剂的影响[A];第四届全国工业催化技术及应用年会论文集[C];2007年
7 刘智;黄海兵;张新莉;甄洪鹏;义建军;黄启谷;杨万泰;张明革;高克京;李红明;;高活性TiCl_4/SiO_2/AlEt_3催化剂淤浆聚合制备宽峰分布聚乙烯[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 杨述芳;陶若虹;徐树元;任宏俊;;催化剂的壁厚设计与寿命管理[A];2012中国环境科学学会学术年会论文集(第三卷)[C];2012年
9 韩哲;张冬菊;李国平;武剑;刘成卜;;Ziegler-Natta催化剂下α-烯烃聚合反应中若干问题的理论研究[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年
10 洪景萍;;山梨醇和钌助剂添加对二氧化硅担载钴基催化剂结构及其费托合成性能影响的原位表征研究[A];中国化学会第28届学术年会第1分会场摘要集[C];2012年
相关重要报纸文章 前3条
1 覃泽文;催化剂助氢气轻松储存[N];中国能源报;2009年
2 仇国贤;原位晶化催化剂降物耗能耗[N];中国化工报;2009年
3 特约记者 张晓君 萧兵;科技创新降低能耗提高效率[N];中国石油报;2011年
相关博士学位论文 前10条
1 周功兵;液相苯部分加氢制环己烯新型钌催化剂的研究[D];复旦大学;2014年
2 刘洋;基于POC和SCR技术降低车用柴油机颗粒物和氮氧化物排放的研究[D];山东大学;2015年
3 伍士国;基于CTAB辅助制备的FeMnTiO_x催化剂NH_3-SCR脱硝的性能研究[D];南京大学;2015年
4 曹朋;丁腈橡胶溶液加氢催化剂的制备及活性研究[D];北京化工大学;2015年
5 王芬芬;纤维素催化转化制备乳酸[D];陕西师范大学;2015年
6 王秋麟;钛基催化剂催化降解氯苯和二VA英的基础研究[D];浙江大学;2015年
7 郭跃萍;电沉积制备非晶态Co基薄膜催化剂硼氢化钠制氢研究[D];兰州大学;2013年
8 汤常金;固相法制备金属氧化物催化材料及其消除CO、NO性能研究[D];南京大学;2011年
9 孙传智;TiO_2基催化剂的制备、表征及其在环境催化中应用的基础研究[D];南京大学;2011年
10 杜玮辰;负载型加氢金属催化剂的制备及其应用[D];浙江大学;2016年
相关硕士学位论文 前10条
1 段志敏;甲烷二氧化碳重整反应镍基和钴基催化剂的制备及性能研究[D];内蒙古大学;2015年
2 马茹瑰;CO_2加氢合成甲醇Cu-ZnO-ZrO_2催化剂的制备与性能研究[D];昆明理工大学;2015年
3 何贞泉;Cu/γ-Al_2O_3催化剂对HCN的催化水解性能研究[D];昆明理工大学;2015年
4 陈新怡;超临界甲醇中纤维素半纤维素催化转移加氢液化研究[D];昆明理工大学;2015年
5 陈雅;M41S及SBA-15介孔分子筛固载硅钨酸催化剂的制备表征及催化性能研究[D];郑州大学;2015年
6 李博;过渡金属复合物催化剂催化二氧化碳加氢反应的研究[D];兰州大学;2015年
7 邢婉贞;硅烷偶联剂改性硅胶催化双氧水的Baeyer-Villiger反应研究[D];南京理工大学;2015年
8 郭瑜;负载型铁基纳米金催化剂的制备及其构效关系研究[D];山东大学;2015年
9 张信莉;Mn改性γ-Fe_2O_3催化剂低温SCR脱硝性能研究[D];山东大学;2015年
10 孙帅帅;CuO/CeO_2的浸渍法制备及其催化CO氧化性能[D];上海应用技术学院;2015年
,本文编号:1688950
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1688950.html