基于光子晶体纳米梁腔的光学传感器研究
本文选题:光子晶体纳米梁腔 切入点:光学传感器 出处:《湘潭大学》2017年硕士论文
【摘要】:在众多类型的微纳谐振腔中,光子晶体纳米梁腔(Photonic Crystal Nanobeam Cavity,PCNC)由于具有极高的品质因子和极小的模体积,且同时具有尺寸小、功耗低、结构简单、制备容易、易于与光波导耦合集成等独特的优点,近年来被广泛应用于低阙值激光器、光学传感器、光学开光和腔光力学系统等微纳光子器件中。另一方面,光学传感器在环境监测、生物分子探测、临床检验、食品检测、海洋探测等领域具有非常广泛的应用,深入研究光学传感器的原理和应用,研制新型高灵敏度高稳定性光学传感器,具有非常重要的实际意义和应用价值。因此,寻求基于光子晶体纳米梁腔的具有高灵敏度高可靠性的新型光学传感器成为本文的研究出发点。本文首先介绍了光子晶体以及光子晶体纳米梁腔,阐述了国内外对基于光子晶体纳米梁腔的光学传感器的研究现状及发展动态,然后对本文中所采用的主要计算方法如平面波展开法和时域有限差分法进行了介绍,同时对用来描述光子晶体纳米梁腔的光学性能和描述光学传感器的传感性能的重要参数如品质因子、模体积和灵敏度等进行了讨论。在本文中我们提出并研究了一种基于有槽鱼骨型光子晶体纳米梁腔的新型光学传感器。我们利用平面波展开法法对有槽鱼骨型光子晶体纳米梁周期性波导结构的光子能带结构进行了分析,对影响光子带隙的结构参数进行了优化,得到了具有较高光子带隙的优化后的结构参数。基于这些优化后的结构参数,我们利用模式匹配理论设计了一种基于有槽鱼骨型光子晶体纳米梁腔的新型光学传感器,并利用时域有限差分法对其光学特性和传感性能进行了研究。我们所设计的新型光学传感器具有较高的品质因子和灵敏度,同时其模体积非常小,灵敏度达到了约560nm/RIU,品质因子达到了4.28×105,模体积则为30.0248(?n),表明我们所提出的光学传感器具有非常优良的光学特性和传感性能,预期具有非常广泛的应用前景。另外,为了为将来的实验研究打下良好的基础,我们还对光子晶体纳米梁腔在光学传感器方面的实际应用进行了实验方面的探索。通过本文的研究,预期将为实际制备基于有槽鱼骨型光子晶体纳米梁腔及其他新型光子晶体纳米梁腔的高灵敏度和高可靠性光学传感器提供指导,为实现光学传感器的阵列化、多通道化和多用途化打下良好的基础。
[Abstract]:In many kinds of micro / nano resonators, photonic Crystal Nanobeam cavity is easy to be prepared because of its high quality factor and very small mode volume, small size, low power consumption and simple structure. In recent years, it has been widely used in micro and nano photonic devices such as low threshold lasers, optical sensors, optical open light and cavity optomechanical systems, etc. On the other hand, optical sensors are used in environmental monitoring. Biomolecular detection, clinical testing, food detection, ocean detection and other fields have a very wide range of applications, in-depth study of the principle and application of optical sensors, the development of a new type of high sensitivity and high stability optical sensors, Has very important practical significance and application value. A new type of optical sensor with high sensitivity and high reliability based on photonic crystal nano-beam cavity has become the starting point of this paper. Firstly, the photonic crystal and photonic crystal nano-beam cavity are introduced in this paper. The research status and development trend of optical sensors based on photonic crystal nanoscale beam cavities are described in this paper. Then the main calculation methods such as plane wave expansion method and finite-difference time-domain method are introduced in this paper. At the same time, the important parameters, such as quality factor, are used to describe the optical properties of photonic crystal nano-beam cavity and the sensing performance of optical sensor. The mode volume and sensitivity are discussed. In this paper, we propose and study a new optical sensor based on the grooved fish bone photonic crystal nano-beam cavity. We use the plane wave expansion method to study the slotted fish bone light. The photonic band structure of the periodic waveguide structure of subcrystal nanocrystalline beams is analyzed. The structural parameters affecting the photonic band gap are optimized, and the optimized structural parameters with higher photonic band gap are obtained. A new type of optical sensor based on the grooved fish bone photonic crystal nano-beam cavity is designed based on the pattern matching theory. The optical properties and sensing properties of the sensor are studied by using the finite-difference time-domain method. The new optical sensor designed by us has high quality factor and sensitivity, and its mode volume is very small. The sensitivity of RIUis about 560 nm / r, the quality factor is 4.28 脳 10 ~ 5, and the mold volume is 30.0248? It shows that the proposed optical sensor has excellent optical properties and sensing properties, and it is expected to have a very wide application prospect. In addition, in order to lay a good foundation for the future experimental research, We also explore the practical application of photonic crystal nano-beam cavity in optical sensor. It is expected to provide guidance for the practical fabrication of high-sensitivity and high-reliability optical sensors based on grooved fishbone photonic crystal nano-beam cavities and other new photonic crystal nano-beam cavities, and to achieve the arraying of optical sensors. Multi-channel and multi-purpose lay a good foundation.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O734;TP212
【参考文献】
相关期刊论文 前10条
1 陈园园;房英;黄闪红;阎晓娜;施解龙;;Surface Tamm states in one-dimensional photonic crystals containing anisotropic indefinite metamaterials[J];Chinese Optics Letters;2013年06期
2 冯琛;冯国英;陈念江;周寿桓;;基于宽度抛物线型和渐变孔径的超高Q低V一维光子晶体纳米梁腔的设计[J];物理学报;2012年13期
3 程阳;;1维全息光子晶体的偏振特性[J];激光技术;2010年02期
4 唐军;杨华军;徐权;廖建文;袁舒;胡渝;;传输矩阵法分析一维光子晶体传输特性及其应用[J];红外与激光工程;2010年01期
5 关春颖;史金龙;;光子晶体全角度反射器件的研究[J];应用科技;2009年03期
6 房淑芬;李集思;苏适;张汉壮;;一维光子晶体的禁带特性[J];吉林大学学报(理学版);2009年01期
7 丁涛;刘占芳;宋恺;;三维光子晶体的制备[J];化学进展;2008年09期
8 王海松;李康;孔凡敏;宋磊;梅良模;;高效多信道光子晶体滤波器的设计与仿真[J];光子学报;2008年06期
9 孟庆生;欧阳征标;王仲淳;吴志荣;刘宗平;罗贤达;王宏;;一维光子晶体谐振腔的模式类型及其性质[J];光学学报;2007年07期
10 张瑞君;;光子晶体发光二极管[J];光子技术;2005年04期
,本文编号:1695058
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1695058.html