螺旋聚合物的设计合成与性质研究
本文选题:芳香螺旋聚合物 + 共价螺旋 ; 参考:《吉林大学》2017年博士论文
【摘要】:螺旋结构是生物学研究的核心结构,也存在于自然界中。最常见的喇叭花的缠绕方向,海螺的螺纹等等都呈现螺旋结构,并且绝大多数生物遗传的物质基础DNA也呈现双螺旋结构。受生物体中这些螺旋结构的启发,以及其存在的巨大潜在应用价值,人们通过合理的设计,利用螺旋结构模拟并开发了多种多样的高级结构。例如,脂肪螺旋结构,脂肪-芳香螺旋结构的开发,以及近几年对芳香螺旋结构的研究。基于分子结构的多样化,超分子化学的发展,以及化学表征手段的不断完善,我们逐渐了解了多种螺旋结构的折叠机制,并在此基础上,利用共价键、动态共价键以及金属配位的超分子作用力挑战新型芳香螺旋聚合物及超分子聚合物的合成及性质研究。具体工作如下:1.基于共价键实现螺旋聚合物的构建及利用其单双螺旋互变性质调节两种螺旋至适当比例产生白光,以及利用其中空孔洞实现单分子离子通道的构建共价芳香螺旋聚合物由于共价芳香螺旋聚合物合成方式单一,只能通过共价反应逐一将重复单元连接起来,并且刚性芳环结构的堆积越多,越会限制所形成聚合物的溶解度,所以得到高聚合度的芳香螺旋聚合物仍然是一个挑战。我们利用三联苯二酰肼与二酰氯的衍生物通过共价键连接形成芳香结构为主链的高分子量螺旋聚合物,并研究其性质。之所以用三联苯作为主链结构,一是因为在引入恶二唑后,恶二唑与三联苯达到能量最稳的状态时,能够形成一个角度,从而使得聚合物逐渐弯曲,形成螺旋结构,二是由于其弯曲后形成的孔洞必须控制在合适的尺寸,为后续工作中构建单分子离子通道以及实现离子选择性打下基础。聚合物溶液中存在单双两种螺旋结构,通过调节浓度和温度,可以控制聚合物体系中两种螺旋至合适的比例,从而得到白光,经多种光谱证明之所以发射白光是因为紫外光照射时,适当比例的单螺旋发射的蓝光和双螺旋发射的黄光混合形成的,这一发现为单一有机白光的发射提供了新的模式。另一方面,我们利用具有适当长度的芳香螺旋聚合物的中空孔道,成功得到了离子通道。由于芳香螺旋结构十分稳定,能够跨越脂双层,因此对于质子和阳离子具有很高的传输效率。并且,这种单分子螺旋通道的寿命甚至可以与天然蛋白质通道媲美,成功实现了对天然通道的模拟,这也为实现单分子水平的运输奠定了基础。2.基于可逆动态共价键的自发选择性实现螺旋结构的构建及对其手性放大性质的研究和利用空间位阻效应实现对螺旋聚合物构象的绝对控制及利用其孔洞内外环境的差别实现对苯硫酚催化氧化的微环境的构建这部分研究中,同样做了两部分工作。首先,设计了构象最稳态呈C型的构筑基元,利用其本身的弧度和与喹啉分子反应后形成的分子内氢键作用得到螺旋结构。并且当把带有醛基的手性与非手性喹啉衍生物分子与两端带有酰肼的C型分子混合时,利用席夫碱形成的自发选择性得到了手性与非手性寡聚物螺旋结构共存的溶液,通过测定其比例,发现该体系存在手性放大的现象。这类自发手性放大的研究,无疑为未来动态功能材料的发展以及不对称催化剂的发展奠定了基础。基于动态共价键连接的螺旋分子结构的成功实现,我们利用二酰肼和二醛以动态共价键席夫碱连接形成芳香螺旋聚合物。并利用其结构形成顺式构象时存在强烈的空间位阻,设计合成了以反式构象控制的自折叠螺旋聚合物,实现了对构象的绝对控制。并利用其折叠产生的中空管状结构作为微环境,以双氧水为氧化剂,成功催化了苯硫酚的氧化反应。3.基于超分子聚合物实现高效人工模拟酶的构建鉴于超分子化学的发展,经典的金属-有机自组装体系已成为构建高级结构的理想工具。而且,由于金属配位聚合物结合了有机聚合物的功能以及金属的磁性,电子,光学和催化等性质,将金属配位作用纳入到超分子聚合物的合成也越来越受到关注。在这部分研究中,我们利用酰胺键连接的金属-有机体系,在己二胺两端连上形成双螺旋结构的单链有机分子,当向体系中加入Cu1+或Zn2+时,己二胺两端的单链分子即可与金属离子配位,形成双螺旋分子连接体,从而得到超分子聚合物。考虑到双螺旋分子两端由Zn2+配位形成,我们将其作为金属水解酶模型,成功实现了对底物PNPA的催化水解。而以双螺旋分子为连接体形成的超分子聚合物金属水解酶模型,由于相邻催化位点空间距离的靠近,使其更加集中,当底物接近时,与其碰撞的几率增加,催化活性大大增强,达到了双螺旋分子连接体催化效率的23倍之多。
[Abstract]:Spiral structure is the core structure of biological research. It also exists in nature. The most common direction of floral winding, the screw thread of the conch, and so on are spiral structures, and the vast majority of biological genetic material base DNA also presents a double helix structure. Inspired by these spiral structures in the organism, and the huge potential of its existence In application value, a variety of advanced structures have been simulated and developed by rational design, using the spiral structure. For example, the development of the fat spiral structure, the fatty aromatic spiral structure, and the research on the aromatic spiral structure in recent years. We gradually understand the folding mechanism of a variety of spiral structures, and on this basis, we use covalent bonds, dynamic covalent bonds and metal coordination supramolecular forces to challenge the synthesis and properties of new aromatic spiral polymers and supramolecular polymers. The specific work is as follows: 1. the construction of spiral polymers based on covalent bonds And using its single and double helix interchanging properties to adjust two kinds of helix to the appropriate proportion to produce white light, and the construction of the single molecular ion channel by the hollow hole to construct the covalent aromatic spiral polymer because of the covalent aromatic spiral polymer synthesis method alone, can only be connected by the covalent reaction one by one, and the rigid aromatics. The more accumulation of the ring structure, the more the solubility of the polymer will be limited, so it is still a challenge to get the high degree of polymerization of aromatic spiral polymers. We use the derivatives of triphenyl two hydrazine and two acyl chloride to form a high fraction helical polymer with aromatic structure as the main chain through covalent bond, and study its properties. Three biphenyl is used as the main chain structure, one is that when the bad two azole is introduced, when the evil two azole and triphenyl reach the most stable state of energy, it can form an angle, thus making the polymer bending gradually and forming a spiral structure. Two is that the hole formed after its bending must be controlled in the appropriate size, and the single molecule is constructed for the follow-up work. In the polymer solution there are two kinds of spiral structures in the polymer solution. By adjusting the concentration and temperature, the two kinds of helix in the polymer system can be controlled and the white light is obtained. This discovery provides a new model for the emission of a single organic white light. On the other hand, we have successfully obtained the ion channel by using the hollow channel with an appropriate length of aromatic helix polymer. Therefore, the proton and cations have high transmission efficiency, and the lifetime of this single molecular spiral channel can even be comparable to the natural protein channel, and the simulation of natural channels has been successfully realized. This also lays the foundation for the realization of the.2. based on the spontaneous selectivity of reversible dynamic covalent bonds for the transport of single molecule level. The construction of the structure, the study of its chiral amplification properties and the absolute control of the conformation of the spiral polymer by the space hindrance effect and the construction of the microenvironment for the catalytic oxidation of benzenthiol by the difference of the inner and outer environment of the hole to realize the micro environment of the catalytic oxidation of benzenthiol are also done in two parts. First, the most stable state of the conformation is designed to be C type. The construction base element is spiral structure with its own arc and intramolecular hydrogen bonding with quinoline molecules. And when the chiral and chiral quinoline derivatives with aldehyde group are mixed with the C molecules with acyl hydrazine at both ends, the chiral and achiral oligomerization is obtained by the spontaneous selectivity of the Schiff base formation. It is found that the system exists chiral amplification by measuring the ratio of coexistent structures. This kind of spontaneous chiral amplification will undoubtedly lay the foundation for the development of future dynamic functional materials and the development of asymmetric catalysts. Two hydrazine and two aldehyde are connected with the dynamic covalent Schiff base to form aromatic spiral polymers. There is a strong spatial steric resistance when using the structure to form a cis conformation. A self folding spiral polymer controlled by the trans conformation is designed and synthesized. The absolute control of the conformation is realized. The hollow tubular structure produced by its folding is used as a micro structure. Environment, with hydrogen peroxide as oxidant, the oxidation reaction of benzol was successfully catalyzed by.3.. The construction of highly efficient artificial mimic enzyme based on supramolecular polymer was constructed in view of the development of supramolecular chemistry. The classical metal organic self-assembly system has become an ideal tool for the construction of advanced structures. The function of the compound and the properties of metal magnetic, electronic, optical, and catalysis, and the integration of metal coordination into the synthesis of supramolecular polymers are becoming more and more concerned. In this part of the study, we use the metal organic system connected by the amide bond to form a single strand organic molecule with double helix structure at both ends of hexadamine. When Cu1+ or Zn2+ is added to the system, the single chain molecules at both ends of the hexane can coordinate with metal ions to form a double helix molecular junction to get a supramolecular polymer. Considering that both ends of the double helix are formed by the Zn2+ coordination, we use it as a metal hydrolase model to catalyze the catalytic hydrolysis of the substrate PNPA. The supramolecular polymer metallo hydrolase model, formed by the conjunction, makes it more concentrated due to the proximity of the space distance of the adjacent catalytic sites. When the substrate is close, the probability of the collision is increased and the catalytic activity is greatly enhanced to reach 23 times as much as the catalytic efficiency of the double helix molecular connection.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O631
【相似文献】
相关期刊论文 前10条
1 张永玲;相容化技术与聚合物合金[J];兰化科技;1991年01期
2 韩志超,严大东,董建华;聚合物凝聚态的多尺度连贯研究——国家自然科学基金重大项目介绍[J];中国科学基金;2005年02期
3 金佩强;杨克远;;高温波及聚合物体系的研究和评价[J];国外油田工程;2006年02期
4 孙琳;蒲万芬;赵金洲;辛军;;污水配制碱-聚合物体系的黏度稳定方法[J];石油学报;2009年04期
5 张浩;孙梓嘉;吕雪;赵天一;董阿力德尔图;高歌;;聚合物库的建立与应用的最新进展[J];高分子材料科学与工程;2012年09期
6 王辉;杜官本;;MALDI-TOF-MS分析技术及在聚合物表征中的应用[J];胶体与聚合物;2012年04期
7 В.И.Валуева;黄锡仁;;胶料中聚合物含量的测定[J];橡胶参考资料;1983年06期
8 Graham williams;张舒;;固体聚合物介电松弛的分子性质[J];绝缘材料通讯;1983年04期
9 Paul R.Dean Ⅱ;周木英;;使用次防老剂增强聚合物的耐氧化性能[J];橡胶译丛;1987年05期
10 代模栏;蒋兆贵;邹明国;;聚合物溶度参数的计算[J];成都科技大学学报;1990年05期
相关会议论文 前10条
1 张阿方;李文;张修强;刘坤;陈锋;;大尺度多肽螺旋聚合物的合成与智能化[A];第四届全国分子手性学术研讨会暨2011绿色手性论坛论文摘要集[C];2011年
2 马余强;;聚合物体系中的熵驱动有序[A];2006年全国高分子材料科学与工程研讨会论文集[C];2006年
3 左敏;郑强;;利用动态流变方法研究聚合物体系的结构和性能[A];第四届全国高聚物分子表征学术讨论会论文集[C];2004年
4 胡文兵;栗娟;聂仪晶;;剪切流变诱导聚合物变形的蒙特卡洛模拟研究[A];中国化学会第28届学术年会第18分会场摘要集[C];2012年
5 闫强;张慧娟;周莅霖;辛煈;周航;冯岸超;郭君;简春梅;袁金颖;;新型刺激响应聚合物体系的构筑与功能[A];中国化学会第28届学术年会第15分会场摘要集[C];2012年
6 武培怡;;聚合物体系的二维相关光谱研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
7 刘岚;杨桂兰;邓芹英;;种子溶涨分子烙印聚合物薄层拆分茶碱和咖啡因[A];中国化学会第十三届有机分析与生物分析学术会议论文集[C];2005年
8 李欣蔚;杨丽琨;赵孔双;肖进新;;表面活性剂与聚合物相互作用的介电谱检测[A];中国化学会第十一届胶体与界面化学会议论文摘要集[C];2007年
9 武培怡;;聚合物体系的二维相关光谱研究[A];2007年全国高分子学术论文报告会论文摘要集(上册)[C];2007年
10 张小辉;曾毅;李Z,
本文编号:1864201
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1864201.html