功能性卟啉化合物的合成及其性能研究
本文选题:卟啉化合物 + 光动力治疗 ; 参考:《中国地质大学》2017年博士论文
【摘要】:卟啉化合物具有独特的光物理和光化学性质,被广泛应用于众多前沿科技领域,尤其在光动力治疗和有机太阳能电池领域的应用一直以来都是研究的热点。本论文开展了卟啉双光子光敏剂和有机太阳能电池材料的设计合成及性质研究,主要研究内容如下:1、卟啉是目前临床试验和已批准使用的最主要的光敏剂品种。然而,卟啉类光敏剂对红光和近红外光的吸收弱,严重限制了其在光动力治疗中的应用。卟啉类光敏剂由于最大吸收波长位于400-500 nm,若采用双光子激发,激发波长范围为800-1000 nm,正好位于光动力治疗窗口,能够用于深部肿瘤和大型肿瘤的治疗。研制具有双光子吸收能力强、1O2量子产率高、生物相容性好、并能在肿瘤组织中富集的卟啉类双光子激发光敏剂是双光子光动力治疗的关键。本论文设计合成了一种氨基酸修饰、乙炔桥联的两亲性阳离子结构的新型双光子光动力治疗光敏剂AlaPZn-PhenRu,拟通过在卟啉环上引入氨基酸来增加其水溶性和生物相容性,提高其对肿瘤细胞的渗透性和在肿瘤组织细胞中的富集,改善代谢性能。光物理和光化学性质研究结果表明,该化合物的最大吸收波长为455 nm,同卟啉单体比较,发生了明显的红移,并且具有很高的产生单线态氧的能力,在空气饱和的DMSO溶液中其单线态氧量子产率达0.94。光动力生物活性测试结果表明,该光敏剂在达到730 nM剂量时未表现出暗毒性,而在8J/cm2光照条件下对人类鼻咽癌HK-1癌细胞的半数致死量IC50值为310 nM,并且能够选择地富集在癌细胞内溶酶体中,是一种很有潜力的双光子光动力治疗光敏剂。2、卟啉化合物为大π共轭体系结构,具有良好的电子缓冲性和光电特性,特别在可见光和近红外区有强的光捕获特性,是一类重要的有机光电材料,在体异质结有机太阳能电池方面已经得到较为深入的研究。但是,目前具有较高效率的小分子卟啉类电池材料多是基于A-D-A(Acceptor-Donor-Acceptor)型结构,合成过程一般会用到有毒的锡试剂以及危险的锂试剂,并且分子的共轭性较差,有可能制约其π-π堆积,进而影响分子间电荷传输。本论文设计合成了两种基于卟啉为核、炔键为桥、饶丹宁封端、且具有不同外围取代烷基链的A-π-D-π-A型卟啉给体材料(14BPZnRDN,NBPZnRDN)和两种基于卟啉为核、苯环为桥、傒二酰亚胺为末端的A-π-D-π-A型卟啉受体材料(TPPPZn,DiPPPZn)。炔基的引入使该结构具有更大的共轭平面,提高了分子间的π-π堆积,从而增强了电荷传输,且该分子结构一般采用Sonogashira反应合成避免了使用危险试剂。光物理性质和电化学性质研究发现,给体材料14BPZnRDN的吸收边可以延伸至800 nm,光学带隙为1.67 eV,属于较窄带隙给体材料,易于捕获更多的太阳光,太阳能电池的光电转换效率为2.26%,优于没有外围取代烷基链的NBPZnRDN,表明卟啉β位烷基链的引入改善了溶解性和空间结构,优化了在太阳能电池共混层的自组装行为,增强了膜的性能,从而提升电池的光电转换效率。受体材料TPPPZn的吸收范围为450-530 nm,与吸收范围为625-700 nm的商业化给体材料PCE-10较为互补,共混膜吸光范围覆盖了350-800 nm,说明两者在共混膜中的吸收并不是简单的物理叠加。TPPPZn的LUMO值约为-3.63 eV,接近富勒烯材料,有利于接受电子,同时TPPPZn具有良好的热稳定性(达400 ℃),其制备的有机太阳能电池EQE、Jsc、FF以及PCE分别为70%、12.51 mA·cm-2、57.7%和6.28%,性能表现优于DiPPPZn,说明分子结构中引入傒二酰亚胺能改善其空间结构排布,四对称结构更利于分子自组装,进而提升其光伏性能。以上两类材料结构新颖,受体材料对应的太阳能电池转化效率较高,是一种颇具潜力的小分子受体材料,未见相关报道。
[Abstract]:Porphyrin compounds have been widely used in many frontiers of science and technology because of their unique photophysical and photochemical properties, especially in the field of photodynamic therapy and organic solar cells. The design, synthesis and characterization of porphyrin two-photon photosensitizers and organic solar cells have been carried out in this paper. The main research contents are as follows: 1, porphyrin is the most important photosensitizer in clinical trials and approved. However, the absorption of porphyrin photosensitizer to red and near infrared light is weak, which seriously restricts its application in photodynamic therapy. Porphyrin photosensitizers are used for two-photon excitation due to the maximum absorption wavelength at 400-500 nm. The excitation wavelength range is 800-1000 nm, which is exactly located in the photodynamic therapy window. It can be used for the treatment of deep tumors and large tumors. The key to double photon photodynamic therapy is to develop photosensitizers with high Biphoton absorption ability, high quantum yield of 1O2, good biocompatibility and rich in tumor tissues. In this paper, a novel two-photon photodynamic photodynamic therapy photosensitizer AlaPZn-PhenRu, an amino acid modified, two amphiphilic cationic structure of acetylene, is designed to increase its water solubility and biocompatibility by introducing amino acids on the porphyrin ring to improve its permeability to tumor cells and the enrichment of its cells in the tumor tissue. The results of photophysical and photochemical properties show that the maximum absorption wavelength of the compound is 455 nm. Compared with the porphyrin monomer, a significant red shift has occurred and the ability to produce a single state oxygen is very high. In the air saturated DMSO solution, the quantum yield of the single state oxygen is up to the 0.94. photodynamic bioactivity test result. It showed that the photosensitizer did not show dark toxicity at the dose of 730 nM, while the median lethal dose of IC50 of human nasopharyngeal carcinoma HK-1 cancer cells was 310 nM under 8J/cm2 illumination, and could be selectively enriched in the lysosomes of the cancer cells. It was a potential two-photon photodynamic therapy photosensitizer.2. The porphyrin compound was large PI. The yoke structure, with good electronic buffering and photoelectric properties, is an important class of organic photoelectric materials, especially in the visible and near infrared regions, and has been deeply studied in the aspect of the bulk heterojunction organic solar cells. However, the small molecular porphyrin battery materials with high efficiency before the eyes have been found. Most of them are based on the A-D-A (Acceptor-Donor-Acceptor) structure. The synthesis process usually uses toxic tin reagents and dangerous lithium reagents, and the conjugation of the molecules is poor. It is possible to restrict the pion pion accumulation and affect the intermolecular charge transfer. This paper has designed and synthesized two kinds of porphyrin as the core, the alkyne bond as the bridge, and the Rao Denning end. A- PI -D- PI -A porphyrin donor materials (14BPZnRDN, NBPZnRDN) and two kinds of A- PI -D- PI -A porphyrin receptor materials (TPPPZn, DiPPPZn) based on the porphyrin as the core, the benzene ring as the bridge, and the introduction of the alkynyl group (TPPPZn, DiPPPZn). The charge transfer is enhanced, and the molecular structure is generally synthesized by Sonogashira reaction to avoid the use of dangerous reagents. The study of photophysical and electrochemical properties shows that the absorption edge of the donor material 14BPZnRDN can extend to 800 nm and the optical band gap is 1.67 eV, which belongs to the narrow-band gap material, and is easy to capture more solar light and solar energy. The photoelectric conversion efficiency of the battery is 2.26%, which is superior to the NBPZnRDN without the external substitutions of the alkyl chain. It shows that the introduction of the porphyrin beta alkyl chain improves the solubility and the spatial structure, optimizes the self assembly behavior of the blends of the solar cell, enhances the performance of the membrane, and thus improves the photoelectric conversion efficiency of the battery. The absorption model of the receptor material TPPPZn is improved. The circumference is 450-530 nm, which is complementary to the commercialized material PCE-10 with the absorption range of 625-700 nm. The light absorption range of the blend film covers 350-800 nm, indicating that the absorption in the blend film is not a simple physical superposition of.TPPPZn with a LUMO value of about -3.63 eV, which is close to the fullerene material and is beneficial to the acceptance of electrons, while TPPPZn has a good effect. The thermal stability (400 degrees C), the EQE, Jsc, FF and PCE of the organic solar cells are 70%, 12.51 mA, cm-2,57.7% and 6.28% respectively. The performance performance is better than that of DiPPPZn. It shows that the introduction of two imide can improve the layout of the space structure in the molecular structure, and the four symmetry structure is more beneficial to the molecular self-assembly and then improves the photovoltaic performance of the above two categories. The material structure is novel, and the conversion efficiency of solar cells with corresponding receptor materials is relatively high. It is a promising small molecule receptor material.
【学位授予单位】:中国地质大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O626
【相似文献】
相关期刊论文 前10条
1 彭小彬,梁世强;卟啉化合物与核酸的相互作用研究[J];化学进展;2001年05期
2 黄丹,田澍;卟啉及金属卟啉化合物的研究进展[J];江苏石油化工学院学报;2003年03期
3 崔海波;;卟啉化合物的合成方法[J];河北化工;2008年03期
4 王晓梅;李雅;韩士田;刘彦钦;;几种卟啉化合物的合成及表征[J];化学试剂;2009年05期
5 汤莹;胡炳成;刘祖亮;;卟啉化合物的合成[J];广州化工;2010年10期
6 王金旺 ,吕德宣 ,荣光华;原油中金属卟啉化合物的测定法[J];石油实验地质;1980年01期
7 范健;;关于卟啉化合物命名的建议[J];分析化学;1982年01期
8 ;治癌药卟啉化合物的实用目标[J];化学通报;1986年07期
9 卢昌利;侯安新;;卟啉化合物的合成与应用研究进展[J];广东化工;2013年20期
10 沈致隆,傅翔,段振宁;钒氧卟啉化合物的氧化还原电位[J];分析化学;2000年08期
相关会议论文 前10条
1 蒋成瑞;赵红莉;袁慧慧;蓝闽波;;卟啉化合物的合成及其光学性质[A];21世纪太阳能新技术——2003年中国太阳能学会学术年会论文集[C];2003年
2 侯军;周子彦;吴学;;新型卟啉化合物的合成及其光谱性质[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
3 于克贵;周成合;李东红;刁俊林;;一种新型卟啉的合成研究[A];第五届全国化学生物学学术会议论文摘要集[C];2007年
4 施秀英;朱义州;郑健禺;;三嗪键联卟啉化合物的合成及其分子识别[A];全国第十四届大环化学暨第六届超分子化学学术讨论会论文专辑[C];2008年
5 郝青山;陈金平;李Z,
本文编号:1874324
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1874324.html