温控两相聚合型离子液体的设计及在有机反应中的催化应用
发布时间:2018-05-18 10:17
本文选题:聚合型离子液体 + 自由基聚合 ; 参考:《南京理工大学》2017年硕士论文
【摘要】:针对传统温控两相体系催化剂回收过程中存在流失量大、易失活的缺点,本文利用温控两相离子液体的自分离特性及聚合物大分子在反应体系中性能稳定、不易流失的优点,以聚乙二醇为主链,双键取代咪唑型离子液体为交联剂,采用自由基聚合方法,设计合成出具有温控两相性能的聚合型离子液体(PIL)。同时,利用该聚离子液体协同纳米金制备聚合型离子液体-纳米金(PIL@-Au)催化剂。具体研究内容如下:研究了PIL在水与常用有机溶剂中的溶解性能,PIL能与甲苯构成的"高温均相、低温分相"的PIL/甲苯温控两相体系,该温控体系具有良好的温控性能,PIL在甲苯中的临界溶解温度(CST)为60℃,满足常见有机反应所需温度要求。研究了PIL/甲苯温控两相体系酸催化苯胺与苯甲醛的胺醛缩合反应,采用单因素法探讨了反应过程中PIL添加量、反应物配料比、反应时间、反应温度等因素对反应结果的影响。最佳反应条件:PIL添加量1 g,配料比1:1.2(苯甲醛10 mmol,苯胺12 mmol),溶剂甲苯4 mL,100℃下反应2 h,此时,产物N-亚苄基苯胺的收率达到最大,为93.4%。底物拓展试验中进一步考察了不同取代基对反应结果的影响,产物收率57.2%~82.9%,表明该温控体系对胺醛缩合反应具有广泛的适用性。研究了PIL@-Au/甲苯温控两相体系催化苯乙烯环氧化反应,采用单因素法探讨了反应过程中催化剂用量、反应时间、反应温度、引发剂用量、溶剂用量等因素对反应物的转化率和产物的选择性影响。最佳反应条件:PL@-Au添加量80mg,0.624 g苯乙烯,反应温度110℃,5 mL甲苯溶液,8%TBHP引发剂(与苯乙烯的摩尔比),O2流速25 mL·min-1,此时,苯乙烯的转化率为97.8%,环氧苯乙烷的选择性为81.9%。分别研究了最佳反应条件下温控体系中催化剂PIL和PIL@-Au的分离及循环使用过程,均显示出较高的催化活性、较好的催化稳定性和较低的损失率。聚合离子液体酸催化应用及聚合离子液体协同金属及金属化合物催化剂催化应用对聚离子液体的发展和催化剂循环利用起到重要的应用价值。
[Abstract]:In view of the disadvantages of large loss and inactivation in the recovery process of the traditional temperature controlled two phase catalyst system, this paper uses the self separation characteristics of the temperature controlled two-phase ionic liquid and the stability of the polymer macromolecules in the reaction system, and is not easy to lose. The polymeric ionic liquid (PIL) with temperature controlled two phase properties was designed and synthesized by free radical polymerization. At the same time, the polymerization type ionic liquid nano gold (PIL@-Au) catalyst was prepared by using the polyionic liquid to coordinate the nanoscale gold. The specific content of the study was as follows: the solubility of PIL in water and common organic solvents, PIL and toluene composition were studied. The temperature control system of PIL/ toluene temperature controlled two phase system has good temperature control system. The temperature control system has good temperature control performance. The critical dissolution temperature (CST) of PIL in toluene is 60 C, which meets the requirement of temperature for common organic reactions. The condensation reaction between aniline and benzaldehyde in PIL/ toluene temperature controlled two phase system is studied, and the single factor is used. The effect of PIL addition, reactant proportioning, reaction time and reaction temperature on the reaction results was discussed. The optimum reaction conditions were as follows: PIL added 1 g, the proportioning ratio 1:1.2 (benzaldehyde 10 mmol, aniline 12 mmol), solvent toluene 4 mL, and 2 h at 100 C, at this time, the yield of N- benzyl aniline reached the maximum, 93.4%.. It was 93.4%.. In the substrate expansion test, the effect of different substituents on the reaction results was further investigated. The yield of the product was 57.2% ~ 82.9%, indicating that the temperature control system has a wide applicability to the condensation reaction of amino aldehyde. The epoxidation of styrene in PIL@-Au/ toluene temperature controlled two phase system was studied. The single factor method was used to discuss the catalyst in the reaction process. Quantity, reaction time, reaction temperature, dosage of initiator, solvent amount and other factors on the conversion of the reactant and the selectivity of the product. The best reaction conditions: PL@-Au addition 80mg, 0.624 g styrene, reaction temperature 110, 5 mL toluene solution, 8%TBHP initiator (the molar ratio of phenyl ethylene), O2 flow rate 25 mL. Min-1, at this time, the transformation of styrene The rate is 97.8%. The selectivity of epoxy benzyl ethane is 81.9%.. The separation and recycling process of PIL and PIL@-Au in the temperature control system under the optimum reaction conditions are studied respectively. It shows high catalytic activity, better catalytic stability and lower loss rate. The catalytic applications of metal compound catalysts play an important role in the development of polyionic liquids and the recycling of catalysts.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O643.36
【参考文献】
相关期刊论文 前10条
1 霍青云;;基于离子液体——绿色溶剂的制备和应用分析[J];科技传播;2016年11期
2 沈康文;曾丹林;张崎;陈诗渊;裴阳;;离子液体在催化中的应用研究进展[J];材料导报;2016年05期
3 刘翠翠;郭婷;苏日娜;顾雨辰;邓启良;;聚离子液体材料在分离科学中的研究进展[J];色谱;2015年11期
4 徐艺凇;张凤香;厉嘉云;白赢;肖文军;彭家建;;聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J];化学进展;2015年10期
5 张凤香;白赢;徐艺凇;厉嘉云;彭家建;;聚乙二醇功能化双咪唑型离子液体在H_2PtCl_6催化烯烃硅氢加成反应中的应用[J];杭州师范大学学报(自然科学版);2015年05期
6 汪亚美;王新承;李顺杰;黄崇品;宋彦磊;陈标华;;聚合离子液体在催化转化果糖制备乳酸中的应用[J];有机化学;2015年02期
7 高晓红;冯辉霞;;苯乙烯环氧化制环氧苯乙烷的催化剂研究进展[J];应用化工;2014年08期
8 尤洪星;王永勇;王雪珠;刘晔;;过渡金属配合物功能化离子液体的合成及其在均相催化中的应用[J];化学进展;2013年10期
9 王小丽;陈星;杨刚;邢卫红;徐南平;;不对称钴配合物的合成及其催化苯乙烯环氧化[J];精细化工;2013年08期
10 何晓燕;徐晓君;周文瑞;杨武;;聚离子液体的合成及应用[J];高分子通报;2013年05期
,本文编号:1905455
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1905455.html
教材专著