烷基化壳聚糖膜的制备及性能测定
本文选题:乙基化壳聚糖膜 + 丁基化壳聚糖膜 ; 参考:《青岛科技大学》2017年硕士论文
【摘要】:烷基化壳聚糖膜是一种重要的高分子膜,具有抑菌性、可降解性、生物相容性等优良性能,在医药领域得到广泛应用。因此对烷基化壳聚糖膜的制备研究得到了广大学者的关注。本文利用壳聚糖(Mr:117×105,D.D.:95.2%)微波碱化的方法制备乙基化壳聚糖,改变反应时间得到不同取代度的乙基化壳聚糖原料,并在常规醋酸(HAc)体系下制备成膜,考察膜的力学性能,找出高取代度、高性能的乙基化壳聚糖原料。实验得出反应时间为4 h时,乙基化壳聚糖的取代度最大为23.5%,膜的断裂强度最强为220.5 MPa。在常规醋酸(HAc)体系和1-羧甲基-3-甲基咪唑氯盐([Acmim]Cl)与甘氨酸盐酸盐([Gly]Cl)的按质量比混合的二元离子液体体系下将乙基化壳聚糖原料制备成膜,优化膜的制备工艺。实验得出,HAc体系乙基化壳聚糖膜的断裂强度为266.1 MPa,断裂伸长率为17.0%,初始模量为2.3 GPa。二元离子液体体系乙基化壳聚糖膜的断裂强度为168.6MPa,断裂伸长率为11.4%,初始模量为3.6 GPa。结果表明,HAc体系膜断裂强度优于离子液体体系膜,离子液体体系膜与HAc体系膜相比较表面较光滑,接触角小,溶胀度较小,透气性差。对制备的这两种膜进行血液相容性评价得出两种膜均具有良好的血液相容性。改变反应时间制备不同取代度的丁基化壳聚糖,实验得出反应时间为4 h时,取代度最大为27.4%,丁基化壳聚糖膜的断裂强度最强为227.5 MPa。并在HAc体系和[Acmim]Cl与[Gly]Cl按质量比混合的二元离子液体体系下制备丁基化壳聚糖膜,优化膜的制备工艺。实验得出,HAc体系丁基化壳聚糖膜的断裂强度为291.2 MPa,断裂伸长率为12.5%,初始模量为1.9 GPa。离子液体体系膜的断裂强度为191.5 MPa,断裂伸长率为12.7%,初始模量为3.4 GPa。结果表明,HAc体系膜断裂强度优于离子液体体系膜,离子液体体系膜与HAc体系膜相比较表面较粗糙,接触角小,溶胀度较小,透气性差。对制备的这两种膜进行生物相容性评价得出两种膜均具有良好的生物相容性。改变反应时间制备不同取代度的辛基化壳聚糖,得出反应时间为5 h时,取代度最大为23.9%,辛基化壳聚糖膜的断裂强度最强为231.6 MPa。并在HAc体系和[Acmim]Cl与[Gly]Cl的按质量比混合的二元离子液体体系下制备辛基化壳聚糖膜,优化膜的制备工艺。实验得出,HAc体系辛基化壳聚糖膜的断裂强度为232.0 MPa,断裂伸长率为15.8%,初始模量为2.0 GPa。二元离子液体体系辛基化壳聚糖膜的断裂强度为228.2 MPa,断裂伸长率为8.2%,初始模量为3.6 GPa。结果表明,HAc体系膜断裂强度优于离子液体体系膜,离子液体体系膜与HAc体系膜相比较表面较粗糙,接触角小,溶胀度较小,透气性差,对制备的这两种膜进行血液相容性评价得出两种膜均具有良好的血液相容性。同时得出,HAc体系膜中丁基化壳聚糖膜的力学性能最强,离子液体体系膜中辛基化壳聚糖膜的力学性能最强。总体来看HAc体系膜溶胀度、透气性均高于离子液体膜,作为医用材料更容易降解吸收。
[Abstract]:Alkylated chitosan membrane is an important polymer membrane, which has excellent properties such as bacteriostasis, biodegradability and biocompatibility. It has been widely used in the field of medicine. Therefore, the research on the preparation of alkylated chitosan membranes has been paid attention to by many scholars. In this paper, chitosan (Mr:117 * 105, D.D.: 95.2%) is used to prepare B by microwave alkalinity method. The ethyl chitosan material with different degrees of substitution was obtained by changing the reaction time, and the film was prepared under the conventional acetic acid (HAc) system. The mechanical properties of the membrane were investigated and the high substitution degree and high performance ethyl chitosan material was found. The maximum substitution degree of the ethyl chitosan was 23.5% when the reaction time was 4, and the film was broken. The strongest cracking strength is 220.5 MPa. in the conventional acetic acid (HAc) system and the preparation of the ethyl chitosan material under the mass ratio of the two element ionic liquid system of 1- carboxymethyl -3- methyl imidazolium chloride ([Acmim]Cl) and glycine hydrochloride ([Gly]Cl). The preparation process of the membrane is optimized. The fracture of the ethyl chitosan membrane in the HAc system is broken. The tensile strength is 266.1 MPa, the elongation at break is 17%, the initial modulus is 2.3 GPa. two yuan ionic liquid system, the fracture strength of the ethyl chitosan film is 168.6MPa, the elongation at break is 11.4%, the initial modulus is 3.6 GPa., indicating that the fracture strength of the HAc system membrane is superior to the ionic liquid membrane, the ionic liquid system membrane and the HAc system membrane phase comparison table The surface is smooth, the contact angle is small, the swelling degree is small and the air permeability is poor. The blood compatibility of the two films prepared by the two kinds of membranes all have good blood compatibility. The reaction time is changed to prepare the butyl chitosan with different degree of substitution. The maximum substitution degree is 27.4% and the butyl chitosan membrane is obtained when the reaction time is 4 h. The fracture strength was 227.5 MPa. and the chitosan membrane was prepared under the HAc system and the two element ionic liquid system of [Acmim]Cl and [Gly]Cl. The preparation process of the membrane was optimized. The experimental results showed that the fracture strength of the butyl chitosan membrane was 291.2 MPa, the elongation at break was 12.5%, and the initial modulus was 1.9 GPa. ionic liquids. The fracture strength of the system membrane is 191.5 MPa, the elongation at break is 12.7% and the initial modulus is 3.4 GPa.. The results of the initial modulus of 3.4 GPa. show that the fracture strength of the HAc system membrane is superior to the ionic liquid system membrane. The ionic liquid system membrane has a relatively rough surface, the contact angle is small, the swelling degree is small, and the air permeability is poor. The biocompatibility of the two membranes prepared by the ionic liquid system is biocompatible. The two films have good biocompatibility. The reaction time is changed to prepare the octyl chitosan with different degrees of substitution. When the reaction time is 5 h, the maximum substitution degree is 23.9%. The fracture strength of the octyl chitosan film is the strongest 231.6 MPa., and the two element ionic liquid is mixed in the HAc system and the [Acmim] Cl and [Gly]Cl mass ratio. The octyl chitosan film was prepared under the body system to optimize the preparation process. The fracture strength of the octyl chitosan film in HAc system was 232 MPa, the elongation at break was 15.8%, the breaking strength of octyl chitosan film with initial modulus of 2 GPa. two yuan was 228.2 MPa, the elongation at break was 8.2%, and the initial modulus was 3.6 G. The results of Pa. show that the fracture strength of the HAc system membrane is better than that of the ionic liquid system membrane. The surface of the ionic liquid system membrane is relatively rough, the contact angle is small, the swelling degree is small, and the air permeability is poor. The blood compatibility of the two films prepared by the two kinds of membranes all have good blood compatibility. At the same time, the HAc system membrane is obtained. The mechanical properties of the butyl chitosan film are the strongest. The mechanical properties of the octyl chitosan film in the ionic liquid system membrane are the strongest. In general, the swelling degree of the HAc system membrane is higher than that of the ionic liquid membrane, and it is more easily degraded and absorbed as a medical material.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O636.1
【参考文献】
相关期刊论文 前10条
1 李卫红;朱娴;雷文;包玉衡;;壳聚糖及其衍生物在医药领域的应用[J];高分子通报;2015年12期
2 裴立军;蔡照胜;商士斌;宋湛谦;;碱性离子液体碱化制备N-十六烷基化壳聚糖[J];化学试剂;2013年08期
3 裴立军;蔡照胜;商士斌;宋湛谦;;碱性离子液体碱化制备N-十二烷基壳聚糖[J];精细化工;2013年07期
4 姬娜;熊柳;卜祥辉;孙庆杰;;可食性绿豆淀粉膜制作工艺的研究[J];中国粮油学报;2012年01期
5 陈晓义;胡丽娜;管勇佳;田雨;田波;;超声波改性马铃薯淀粉可降解性包装膜的制备研究[J];食品工业科技;2012年01期
6 于淑娟;;壳聚糖/羧甲基壳聚糖及其衍生物在日化方面的应用[J];日用化学品科学;2011年12期
7 李凤红;吴全才;赵文凯;杨旭鹏;汪志香;;高淀粉含量玉米淀粉膜的制备及结构性能研究[J];现代化工;2009年12期
8 程建华;;壳聚糖接枝高分子絮凝剂制备及处理造纸废水研究[J];广东化工;2009年08期
9 周天椺;唐文琼;沈青;;壳聚糖改性技术的新进展Ⅰ.烷基化、酰化以及接枝化改性[J];高分子通报;2008年11期
10 马冰洁;于鸿雁;唐洪波;刘公召;;改性马铃薯淀粉膜研究[J];粮油加工;2008年10期
相关博士学位论文 前1条
1 李慧英;壳聚糖对肉鸡免疫功能的影响及其分子机理研究[D];内蒙古农业大学;2009年
相关硕士学位论文 前1条
1 孟兆荣;马来酸酐土豆淀粉酯生物降解塑料的制备、表征及性能研究[D];湖南工业大学;2009年
,本文编号:1930147
本文链接:https://www.wllwen.com/kejilunwen/huaxue/1930147.html