含不对称苄基与三氟甲基化叔碳结构聚酰亚胺材料的合成及其性能的研究
发布时间:2018-06-25 14:01
本文选题:聚酰亚胺 + 不对称 ; 参考:《南昌大学》2017年硕士论文
【摘要】:传统芳香族聚酰亚胺具有优异的耐热性和耐腐蚀性等性能,被广泛应用于航天航空、汽车电子、石油化工等领域。随着科学技术的发展,在现代信息科技领域中,聚酰亚胺材料经过技术的突破及材料的创新促使微电子产品趋于多功能化、高性能化、便携化和柔性化。为了解决高密度、高精度环境下集成电路中所形成的信号延误缺失及功率损耗发热等问题,以及满足柔性可穿戴设备的应用需求,新一代高性能低介电、高透明无色等功能化材料的开发迫在眉睫。聚酰亚胺作为在微电子行业重要的应用材料,如何开发出新型低介电及高透明的聚酰亚胺材料一直是高性能聚酰亚胺研究的重要课题之一。传统聚酰亚胺材料一般都有较高的介电常数及较深的颜色,从结构上分析是由于分子链间存在较强的相互作用,分子内电荷的转移使得给电子体与受电子体容易形成络合物(CTC)。要获得高透无色以及低介电常数的聚酰亚胺材料,就应该减少CTC效应的形成。为此,我们设计了含不对称结构的苄基,以及三氟甲基结构引入到聚酰亚胺主链中来优化其性能,主要从以下两个方面来进行探索研究:第一,以对羟基苯甲醛为初始原料,经过三步反应成功的得到含不对称结构的新型二胺4-氨基苯基对(4-氨基苯氧基)苄基醚(APABE)单体。通过所得新型二胺 APABE 和 1,4,4-三苯二醚二胺(1,4,4-APB)分别与 6FDA、ODPA、BTDA、BPDA四种芳香族二酐单体聚合得到不对称与对称的两种聚酰亚胺,分别命名为API1-API4和SPI1-SPI4,并对这两个系列进行了全面的性能测试。对比发现,API系列的溶解性和光学性能都明显强于SPI系列。在热性能和机械性能中,API系列和SPI系列的玻璃化转变温度分别为237-265 ℃和249-313 ℃,在氮气环境中5%热失重的温度为453-486 ℃和511-517 ℃;拉伸强度分别为88.2-99.5 MPa和84.4-99.7 MPa。这说明含苄基的引入维持了聚酰亚胺良好的热性能和机械性能。此外,在动态介电分析中,API3的介电常数(ε) 2.57 (1 MHz和25℃)与介电损耗值(ε") 0.0040都比SPI3的介电常数(ε) 3.22 (1 MHz和25℃)与介电损耗值(ε")0.1376低。这表明不对称结构的引入也赋予了 CPI3较低的介电性能。第二,首先以2,2,2-三氟苯乙酮和苯乙酮为原料,分别与苯酚及氯化偏苯三酸酐两步反应得到含氟与不含氟的两种二酐单体1,1-二(4-偏苯三酸酐单酯苯基)-1-苯基-2,2,2-三氟乙烷(TAMPPTE)和1,1-二(4-偏苯三酸酐单酯苯基)-1-苯基-乙烷(TAMPPE)。利用新型含氟二酐TAMPPTE和不含氟二酐TAMPPE分别与四种芳香族二胺ODA、1,4,4-APB、1,3,4-APB、DMB聚合得到含氟与不含氟的两种聚酰亚胺,分别命名为FPI1-FPI4和NPI1-NPI4。同样的对这两个系列进行了比较全面的性能测试。其中溶解性方面,FPI系列明显优于NPI系列。在光学性能及热性能方面,FPI系列和NPI系列在T500处的透过率分别在93.3-95.7%和92.4-95.2%范围内;玻璃化转变温度分别在230-285℃和228-284℃范围内。这说明FPI系列呈现出了更好的光学性能和热性能。在介电分析中,FPI1和FPI3的介电常数(ε')分别为2.56和2.31(1 MHz和25℃),相对于商业化的Kapton(?)膜来说有很大的降低。这表明含三氟甲基结构的FPI提高了材料的介电性能。
[Abstract]:With excellent heat resistance and corrosion resistance, the traditional aromatic polyimides are widely used in aerospace, automotive electronics, petrochemical and other fields. With the development of science and technology, in the field of modern information technology, the breakthrough of technology and the innovation of materials make microelectronic products more versatile in the field of modern information technology. High performance, portable and flexible. In order to solve the problems of lack of signal delay and power loss heating in integrated circuits in high density and high precision environment, as well as the application demand of flexible wearable equipment, the development of a new generation of high-performance, low dielectric, high transparent and colorless materials is imminent. How to develop new low dielectric and high transparent polyimide materials is one of the most important topics in the research of high performance polyimides. The traditional polyimide materials usually have high dielectric constant and deeper color. The structure analysis is due to the strong phase between the molecular chains. Interaction, the transfer of intramolecular charge makes it easy to form a complex (CTC) for electrons and electrons. To obtain polyimide with high colorless and low dielectric constant, the CTC effect should be reduced. Therefore, we have designed the benzyl group containing asymmetric structure and three fluoromethyl structure into the main chain of polyimide. In order to optimize its performance, we mainly explore the following two aspects: first, a new two amine 4- amino benzyl benzyl ether (APABE) monomer (4- amino Benzoxy) benzyl ether (APABE) monomer containing asymmetric structure was successfully obtained by the three step reaction of P hydroxybenzaldehyde as the initial raw material. The new type of amine APABE and 1,4,4- three benzene two ether two amine (1,4,4) were passed through. -APB) obtained asymmetric and symmetrical two Polyimides with four aromatic two anhydride monomers of 6FDA, ODPA, BTDA, BPDA respectively, named API1-API4 and SPI1-SPI4 respectively, and carried out a comprehensive performance test for the two series. It was found that the solubility and optical properties of the API series were obviously stronger than that of the SPI series. In the performance, the glass transition temperature of API series and SPI series is 237-265 C and 249-313 C respectively. The temperature of 5% heat loss in nitrogen environment is 453-486 and 511-517, and the tensile strength is 88.2-99.5 MPa and 84.4-99.7 MPa. respectively. In dynamic dielectric analysis, the dielectric constant (E) 2.57 (1 MHz and 25 C) and dielectric loss value (E) 0.0040 of API3 are lower than the dielectric constant (E) 3.22 (1 MHz and 25 C) and dielectric loss value (epsilon) 0.1376 of SPI3. This indicates that the introduction of asymmetric structure also gives CPI3 a lower dielectric property. Second, firstly, 2,2,2- three fluorophenone and benzene. Acetone is used as a raw material, and two kinds of two anhydride monomers 1,1- two (4- partial benzene three anhydride monoester) -1- -2,2,2- three fluoroethane (TAMPPTE) and 1,1- two (4- partial benzene anhydride monoester phenyl) -1- phenyl ethane (TAMPPE) are obtained respectively with phenol and chlorinated benzyl anhydride, respectively. The new fluorine two anhydride TAMPPTE and fluorine free two are obtained. Anhydride TAMPPE copolymerization with four aromatic two amines, ODA, 1,4,4-APB, 1,3,4-APB, DMB to obtain two kinds of polyimides containing fluorine and non fluorine, named FPI1-FPI4 and NPI1-NPI4., respectively. The two series have been tested in a more comprehensive performance. In terms of solubility, FPI series is obviously superior to NPI series. In optical properties and thermal properties The transmittance of the FPI series and the NPI series at T500 is within the range of 93.3-95.7% and 92.4-95.2%, respectively, and the glass transition temperature is within the range of 230-285 and 228-284, respectively. This shows that the FPI series presents better optical and thermal properties. In dielectric analysis, the dielectric constant (E) of FPI1 and FPI3 is 2.56 and 2.31 (1 MHz and 2, respectively). 5 degrees centigrade), which is much lower than that of commercialized Kapton film. This indicates that the FPI containing three fluoromethyl structure improves the dielectric properties of the material.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O633.2
【参考文献】
相关期刊论文 前10条
1 夏森林;易龙飞;孙振;向诘然;汪映寒;;侧链含邻苯二甲酰亚胺的聚酰亚胺液晶垂直取向剂的制备与表征[J];高分子学报;2013年11期
2 卜倩倩;张树江;杨逢春;李彦锋;;不对称聚酰亚胺的结构设计、合成及其可溶性[J];化工新型材料;2011年04期
3 宋晓峰;;聚酰亚胺的研究与进展[J];纤维复合材料;2007年03期
4 李福成;;聚酰亚胺/无机纳米复合材料的制备、结构与性能[J];工程塑料应用;2006年04期
5 王维;张爱清;邱小林;杨志兰;乔学亮;陈建国;;含氧膦结构的可溶性感光聚酰亚胺合成与表征[J];高分子学报;2006年03期
6 尹大学,李彦锋,张树江,王晓龙,胡爱军,范琳,杨士勇;聚酰亚胺材料溶解性能的研究进展[J];化学通报;2005年08期
7 崔永丽,张仲华,江利,欧雪梅;聚酰亚胺的性能及应用[J];塑料科技;2005年03期
8 景晓辉,马海燕;一种醚酐型可溶性聚酰亚胺的合成与表征[J];化工新型材料;2005年05期
9 刘金刚,杨海霞,王丽芳,李彦峰,范琳,杨士勇;含氟芳杂环高分子及其在微电子工业中的研究进展[J];高分子通报;2003年05期
10 褚庆辉,丁孟贤;主链含有β-二酮结构聚酰亚胺的合成与表征[J];应用化学;1999年06期
,本文编号:2066235
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2066235.html
教材专著