金属及石墨烯复合材料在电化学传感器中的应用
发布时间:2018-07-04 11:47
本文选题:电化学传感器 + 金属复合材料 ; 参考:《吉林大学》2017年硕士论文
【摘要】:作为分析测试的重要手段电化学传感器由于具有操作简便、费用较低、在复杂环境中可实时在线检测等多方面的优点,因此在临床医学、食品和药品工业、农业、生命科学和环境保护等领域具有广泛的应用。其中电极修饰材料对电化学传感器的性能有着决定性的作用,因此寻求一些性能良好的电极修饰材料是电化学传感器的主要研究方向之一。目前,碳纳米材料、导电聚合物、金属或金属氧化物纳米材料和生物活性分子等材料已经被普遍的用作电极修饰物,制备出了大量具有优良性能且适用范围广泛的电化学传感器。将两种或多种具有不同性质的材料结合在一起,所得到的复合材料在电化学传感器性能的改进上具有非常显著的优势。复合材料与单一组分相比,不仅能够结合各个组分的优势,还能在协同作用之下显示出更为优越的性能。金属材料由于具有导电性好与电催化活性高等优点,因此可以将它和其他不同的基体材料相结合,从而制备出种类繁多,结构多变,性能多样的金属复合材料。将金属复合材料修饰到电极表面,能够十分明显的增大电化学传感器的响应信号,进而提高方法的灵敏度。石墨烯具有独特的二维结构、优异的导电性、高比表面积等优点,能够高效地增强电化学传感器的催化效果。基于以上分析,本文以金属复合材料和石墨烯为基础,构筑电化学传感器分别对多巴胺和对硝基苯酚进行检测,具体工作如下:第一章,对金属复合材料、石墨烯和电化学传感器作了简要概述。第二章,以铜与2-氨基-5-巯基-1,3,4-噻二唑络合物(Cu(Ⅱ)-AMT)为原料,并结合石墨烯(rGO)通过π-π堆叠相互作用构建了rGO-poly(Cu-AMT)纳米复合材料修饰的电化学传感器,该传感器可以用于多巴胺的超灵敏选择性检测,并探讨了多巴胺在该电极材料上的电子转移动力学。第三章,利用简单且低成本的电化学方法制备了rGO-poly(Cu-GSH)纳米复合物,将该纳米复合物修饰的电极应用于线性扫描伏安法检测4-硝基苯酚,该电化学传感器表现出较好的稳定性、较高的灵敏度、较宽的线性范围0.05-300μM和较低的检测限13.56 nM。
[Abstract]:As an important means of analysis and testing, electrochemical sensors have the advantages of simple operation, low cost, real-time on-line detection in complex environment, and so on. Therefore, electrochemical sensors are widely used in clinical medicine, food and medicine industry, agriculture, etc. Life science and environmental protection are widely used. Electrode modified materials play a decisive role in the performance of electrochemical sensors, so it is one of the main research directions of electrochemical sensors to seek some good electrode modified materials. At present, carbon nanomaterials, conductive polymers, metal or metal oxide nanomaterials and bioactive molecules have been widely used as electrode modifiers. A large number of electrochemical sensors with excellent performance and wide application range have been prepared. By combining two or more materials with different properties, the obtained composite has a very significant advantage in improving the performance of electrochemical sensors. Compared with a single component, the composite can not only combine the advantages of each component, but also show better performance under synergistic action. Metal materials have the advantages of good electrical conductivity and high electrocatalytic activity, so they can be combined with other different matrix materials to produce various kinds of metal composites with varied structure and various properties. When the metal composite is modified to the surface of the electrode, the response signal of the electrochemical sensor can be increased obviously, and the sensitivity of the method can be improved. Graphene has a unique two-dimensional structure, excellent electrical conductivity, high specific surface area and other advantages, which can effectively enhance the catalytic effect of electrochemical sensors. Based on the above analysis, an electrochemical sensor was constructed to detect dopamine and p-nitrophenol based on metal composites and graphene. Graphene and electrochemical sensors are briefly reviewed. In chapter 2, the electrochemical sensor modified by rGO-poly (Cu-AMT) nanocomposites was prepared by 蟺-蟺 stacking interaction of copper with 2-amino-5-mercapto-3-thiadiazole complex (Cu (鈪,
本文编号:2095982
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2095982.html