镍钴基电催化剂的制备及氧电极催化性能研究
[Abstract]:With the rapid development of human society and the world economy, the continuous consumption of energy and the deterioration of the environment have become a serious problem faced by mankind. People urgently need to develop new and renewable energy to reduce the dependence on the Limited traditional fossil energy. The core of the electrochemical energy conversion and storage technology is a series of electrochemical reaction processes: oxygen reduction reaction, hydrogen oxidation reaction, hydrogen oxidation and oxygen precipitation reaction. Generally speaking, kinetics is very important. Slow oxygen reduction and oxygen precipitation restrict the comprehensive performance and commercialization of the entire electrochemical device. The key to the acceleration of these processes is the synthesis and design of excellent active electrocatalysts. At present, commercial electrocatalysts are precious metal based materials (such as platinum, palladium, iridium, etc.), with high prices and scarcity. In recent years, in order to improve the efficiency of the electrocatalytic reaction and to develop the low price, the non noble metal nanoselectrocatalyst has been widely concerned in recent years to replace the noble metal nanoscale electrocatalyst. Based on this, the main contents of this paper include the synthesis of high catalytic activity, good stability and good stability. Low price oxygen electrocatalysts. The main contents include the following aspects: 1, we propose a "top-down" synthesis strategy to prepare a Co monatomic catalyst with a load of more than 4% of the nitrogen doped porous carbon supported by a simple in situ high-temperature pyrolysis method. With ZnCo-BMOF as a precursor, high temperature pyrolysis over 800 degrees centigrade. In the original process, the Co ions were reduced by the carbon formed by the ligand and accompanied by the volatilization of Zn. The doping Zn played a "fence" role to increase the distance of adjacent Co ions in the space and did not produce the Co-Co bond. The synthesized Co single atom catalyst showed superior oxygen reduction catalytic activity and stability in the 0.1M KOH solution and half wave electricity. 0.881V, far more than Pt/C and most of the non noble metal nanoscale catalysts reported, in the study process, we use spherical aberration electron microscopy, X ray fine absorption spectrum and other characterization means to give a more clear image on the structure of the catalyst at the atomic level, which is good for the exploration of the structure effect relationship of the catalyst. The reaction strategy can be extended to the synthesis of a series of single atomic catalysts, such as Ni, Cu, Fe, Ru, etc., which provide a new strategy and thought.2 for the preparation of other single atom catalysts in the future. The design and synthesis of the electrocatalyst occupy a very important position in the electrochemical renewable energy transfer technology. GO directly disperses untreated carbon nanotubes as substrates and loads NiCo layered double hydroxides (NiCo-LDH) with a certain oxygen precipitation activity through simple and mild hydrolysis. Graphene oxide is considered to have the properties of the surface active agent, containing hydrophobic aromatic carbon rings, hydrophilic hydroxyl groups, carboxyl groups and other marginal groups. Fossil graphene can disperse carbon nanotubes (CNT) directly with carbon nanotubes through the interaction of pion bonds. The surface of carbon nanotubes is not required to be functionalized or treated by surfactant. The surface of graphene oxide and carbon nanotubes can be combined by the interaction of pi - pi bonds. This method not only preserves the water solubility of graphene oxide, but also the surface of carbon nanotubes. At the same time, carbon nanotubes prevent the aggregation of graphene oxide and increase the conductivity of graphene oxide. By changing the ratio of GO to CNT, when the ratio of GO to CNT is 1:1, the composite with the best activity of OER is obtained. In the 0.1 M KOH solution. In the liquid, the starting potential of NiCo-LDH/GO-CNT's OER electrocatalysis is only 1.42V, which is much more negative than the starting potential of other catalysts. The stability test shows that the current density can remain above 90% after 1000 cycles. The main reason for the high catalytic activity and good stability of the composite is the synergistic effect of LDH and GO-CNT on OER.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O643.36;O646
【相似文献】
相关期刊论文 前10条
1 李文峰,辛文利,吕玲,梁国正;直接甲醇燃料电池电催化剂的研究及进展[J];材料导报;2001年01期
2 陈先学,卢建树;直接甲醇燃料电池电催化剂的研究进展[J];化工新型材料;2003年05期
3 陈维民;孙公权;赵新生;孙丕昌;杨少华;辛勤;;直接甲醇燃料电池电催化剂性能衰减研究[J];高等学校化学学报;2007年05期
4 张林森;王力臻;李振亚;王为;;活性炭负载镍析氢电催化剂的制备和表征[J];化学工业与工程;2009年02期
5 侯晓川;高丛X&;肖连生;张树峰;刘晨;郭金良;;纳米碳基铂电催化剂的研制及表征[J];有色金属(冶炼部分);2010年06期
6 巢亚军;;特拉华大学研发高选择性高效电催化剂可将二氧化碳转化为化学品[J];化学工业与工程技术;2014年01期
7 于书平;娄群;刘润婷;韩克飞;汪中明;朱红;;Cu@Pt/MWCNTs-MnO_2电催化剂的制备及电催化性能研究[J];化学学报;2012年22期
8 李旭光,邢巍,唐亚文,陆天虹;直接甲醇燃料电池阴极电催化剂的研究进展[J];化学通报;2003年08期
9 唐志诚;吕功煊;;直接甲醇燃料电池阳极电催化剂[J];化学进展;2007年09期
10 郭娟;陈胜洲;邹汉波;林维明;;导电聚合物电催化剂的研究进展[J];电池;2010年06期
相关会议论文 前10条
1 赵莹莹;杨文胜;;Pd/TiO_2-graphene电催化剂的制备及其性能研究[A];第十四届全国青年催化学术会议会议论文集[C];2013年
2 徐明丽;张正富;杨显万;;直接甲醇燃料电池中阳极电催化剂的研究现状[A];2006年全国功能材料学术年会专辑[C];2006年
3 刘晓为;索春光;张宇峰;唐鼎;;微型直接甲醇燃料电池用电催化剂的制备及性能[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年
4 夏小芸;原鲜霞;张慧娟;马紫峰;;卟啉电催化剂的超声分散法制备工艺研究[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年
5 徐吉静;王中利;徐丹;张蕾蕾;张新波;;新型锂空气电池电催化剂研究[A];第十四届全国青年催化学术会议会议论文集[C];2013年
6 陈金媛;;TiO_2/碳纳米管光电催化剂的制备及性能[A];第四届全国环境催化与环境材料学术会议论文集[C];2005年
7 陈胜洲;杨伟;王松清;刘自力;林维明;;氮掺杂碳气凝胶负载钴电催化剂的性能研究[A];低碳技术与材料产业发展研讨会论文集[C];2010年
8 刘岩;王远;高昂;张琳玮;;高催化活性和高稳定性直接甲醇燃料电池电催化剂[A];中国化学会第29届学术年会摘要集——第28分会:绿色化学[C];2014年
9 黄建书;张校刚;罗建民;孙景玉;杨文建;;水热法制备Ag-WO_3纳米电催化剂[A];第二十七届全国化学与物理电源学术年会论文集[C];2006年
10 陈声培;黄桃;侯晓雯;周志有;孙世刚;;不锈钢载铂基电催化剂上甲酸氧化的原位FTIR反射光谱研究[A];全国第13届分子光谱学术报告会论文集[C];2004年
相关重要报纸文章 前1条
1 本报记者 罗阿华 通讯员 罗威;电催化剂设计:开通反应直通车[N];中国化工报;2014年
相关博士学位论文 前10条
1 王娟;多级微纳结构Ni/Co基电催化剂的制备及氢能转换中的应用[D];北京化工大学;2015年
2 张云松;直接甲醇燃料电池电催化剂的制备及电化学性能研究[D];湖南大学;2016年
3 刘友文;二维固体的电荷、自旋属性调控及其电解水应用[D];中国科学技术大学;2017年
4 苏建伟;基于类普鲁士蓝前驱体制备电催化剂及其在碱性电解水中的应用[D];中国科学技术大学;2017年
5 尹培群;镍钴基电催化剂的制备及氧电极催化性能研究[D];中国科学技术大学;2017年
6 周振华;直接甲醇燃料电池:高分散高负载铂基电催化剂的制备规律研究[D];中国科学院研究生院(大连化学物理研究所);2003年
7 闫刚;基于多酸的光、电催化剂设计、制备及其催化性能研究[D];东北师范大学;2017年
8 贾荣利;石墨化沥青基超细炭粉负载Pt基电催化剂的研究[D];天津大学;2005年
9 朱科;质子交换膜燃料电池Pt/C电催化剂和膜电极的研究[D];天津大学;2005年
10 姜鲁华;直接醇类燃料电池阳极铂基电催化剂的研究[D];中国科学院研究生院(大连化学物理研究所);2005年
相关硕士学位论文 前10条
1 安丽娟;直接乙醇燃料电池:铂基和钯基电催化剂的研究[D];石河子大学;2015年
2 韩苗;静电纺丝法制备用于ORR的PdCo催化剂[D];大连交通大学;2015年
3 胡登平;碳基锰钴尖晶石氧化物复合阴极电催化剂的制备及性能研究[D];南京理工大学;2015年
4 刘宁;纳米二硫化钼制氢电催化剂的结构设计与性能优化[D];暨南大学;2015年
5 陆楠宁;三芳基咪唑类有机电催化剂的电极反应动力学、结构优化及应用研究[D];北京工业大学;2015年
6 黄祥君;基于氮掺杂多孔碳材料的燃料电池阴极电催化剂的制备与性能研究[D];安徽大学;2016年
7 施金乐;基于过渡金属电解水催化剂的制备及性能研究[D];重庆师范大学;2016年
8 苏建敏;硼掺杂介孔碳作为氧气还原电催化剂的研究[D];苏州大学;2016年
9 蔚志红;二硫化钼基纳米电催化剂的制备及其催化析氢性质研究[D];吉林大学;2016年
10 丁笑;新型PtFeN/C和PtNiMoN/C系列氧还原电催化剂的制备及性能表征[D];中国矿业大学;2016年
,本文编号:2133960
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2133960.html