当前位置:主页 > 科技论文 > 化学论文 >

负载型钌取代多酸催化剂的设计合成及其在十四烷氧化中的应用

发布时间:2018-07-20 16:31
【摘要】:多酸为一类纳米尺寸的无机簇状化合物,因兼具酸性和氧化还原性,可作为一种十分高效的双功能催化剂。同时,它还具有尺寸多样、结构可调、组成丰富等特点,对不同的催化反应类型均有较好的适应性。据不完全统计,多酸在催化领域的应用研究成果占据了其所有研究领域中的百分之八十以上,可见多酸是一类值得关注且有应用前景的催化剂以往多酸的研究多集中于均相催化领域,但随着研究的不断深入一些较难克服的缺点凸显,如分散性差、比表面积小、难以回收等。这些缺点在一定程度上制约了多酸在催化领域应用的深入开展,同时也与当前绿色化学的理念相违背。为寻求解决方案,科学家们做了较多的尝试和探索,其中最为行之有效的是将多酸负载到合适的载体上制备非均相催化剂,借助载体的高分散性、高比表面积、易于回收等特点克服弊端,推进多酸绿色催化过程的实现。借助这一思路,我们选择了几种钌取代多酸,借助浸渍法将其负载到不同的载体上制得负载型多酸催化剂,并将其用于十四烷烃的催化氧化实验中。遵循绿色催化理念,实验过程以高纯空气作为氧源,不使用强氧化剂和其他溶剂,力图在较温和的条件下促发反应的进行,重点考察不同的载体结构及其不同反应条件对于催化反应的影响。具体开展了下列三方面工作:1.首先合成含四价钌的取代型多酸Rb_(10)[{Ru_4O_4(OH)_2(H_2O)_4}(γ-GeW_(10)O_(36))_2]·21H_2O(GeW_(10)Ru_2)和NH_4[{Ru_4O_6(H_2O)_9}_2{Fe(H_2O)_2}_2{β-TeW_9O_(33)}_2H]·36H_2O(NH_4-2),并将其负载到不同载体上制备了多相催化剂。选择二氧化硅介孔分子筛SBA-15作为催化剂载体,先期对其进行氨基官能化修饰,后将设计合成的钌取代多酸GeW_(10)Ru_2以浸渍法负载到分子筛上制备负载型多酸催化剂SBA-15-Apts-GeW_(10)Ru_2,并通过多种表征手段证明了该制备方案的可行性。而后选择三种具有不同结构的二氧化硅分子筛SBA-15、KIT-6、FDU-12作为催化剂载体,同样对其进行氨基化修饰后负载钌取代型多酸NH_4-2制得催化剂X-Apts-NH_4-2(X=SBA-15、KIT-6、FDU-12),而后通过多种表征手段对该制备过程中多酸的在不同结构载体上的负载情况作深入探讨。2.负载型催化剂SBA-15-Apts-GeW_(10)Ru_2被用于考察十四烷催化氧化过程研究。一方面,考察了催化剂负载量、反应时间、反应温度、催化剂用量等各种反应条件对催化剂催化效率的影响,找到了催化反应的最佳实验条件即催化剂负载量3.21%,反应时间7 h,反应温度150℃,催化剂用量4 mg,在该条件下正十四烷的转化率可达50.97%;另一方面,通过一系列对照实验推断出十四烷催化氧化反应的机理为自由基引发过程。3.具有不同载体的负载型催化剂X-Apts-NH_4-2(X=SBA-15、KIT-6、FDU-12)被用于十四烷的催化氧化过程研究。一方面,重点考察不同载体在实验中对催化剂的催化活性的影响,并于三者中选出了更适宜作为该反应体系的催化剂载体为FDU-12;另一方面,系统研究了固相催化剂FDU-12-Apts-NH_4-2在不同实验条件下的催化活性,考察了催化剂负载量、反应时间、反应温度、催化剂用量等反应条件对其催化活性的影响,确定了催化反应的最佳实验条件为催化剂负载量2.55%,反应温度150℃,反应时间7 h,催化剂用量4 mg,在此条件下正十四烷的转化率达到了52.84%。
[Abstract]:Polyacid is a kind of nano sized inorganic cluster compound. Because of its acidity and oxidation-reduction, it can be used as a highly efficient dual function catalyst. At the same time, it has the characteristics of wide size, adjustable structure, rich composition and so on. It has good adaptability to different types of catalytic reactions. According to incomplete statistics, polyacid is in the field of catalysis. The results of application research occupy more than eighty percent of all the research fields. It can be seen that polyacid is a kind of valuable and promising catalyst for the previous study of polyacid in the field of homogeneous catalysis. However, with the continuous deepening of the research, some of the more difficult shortcomings, such as poor dispersibility and small specific surface area, are difficult to return. To some extent, these shortcomings restrict the development of the application of polyacid in the field of catalysis. At the same time, it is contrary to the idea of current green chemistry. In order to find a solution, scientists have done more attempts and explorations. The most effective is to load polyacid onto a suitable carrier to prepare heterogeneous catalyst. The high dispersion, high specific surface area and easy recovery of the support carrier overcome the disadvantages and promote the realization of the polyacid green catalytic process. With this idea, we choose several ruthenium to replace polyacid, and use the method of impregnation to produce a loaded polyacid catalyzing agent on different carriers, and use it for the catalytic oxidation experiment of fourteen alkanes. In accordance with the concept of green catalysis, the experimental process uses high pure air as the oxygen source, and does not use strong oxidants and other solvents, trying to promote the reaction under more mild conditions, focusing on the effects of different carrier structures and their different reaction conditions on the catalytic reaction. The following three aspects are carried out in the body: 1. first synthesis of containing compounds Tetravalent Ru Rb_ (10) [{Ru_4O_4 (OH) _2 (H_2O) _4} (H_2O) _4} (10) O_ (36)) _2] 21H_2O (GeW_ (10) Ru_2) and its loaded onto different carriers to prepare polyphase catalysts. It was modified by amino functionalization at the first stage, then the synthesized ruthenium was substituted for polyacid GeW_ (10) Ru_2 to be loaded to the molecular sieve to prepare the supported polyacid catalyst SBA-15-Apts-GeW_ (10) Ru_2 by impregnation method, and the feasibility of the preparation was proved by a variety of characterization methods. And then three kinds of silica molecules with different structures were selected. A catalyst X-Apts-NH_4-2 (X=SBA-15, KIT-6, FDU-12) was prepared by aminated modification of SBA-15, KIT-6 and FDU-12 as a catalyst carrier, and then the loading of polyacid on different structural carriers in the preparation process was investigated by a variety of characterization methods, and the.2. supported catalyst SB was deeply discussed. A-15-Apts-GeW_ (10) Ru_2 was used to investigate the catalytic oxidation of fourteen alkanes. On one hand, the effects of the amount of catalyst load, reaction time, reaction temperature, and the amount of catalyst on the catalytic efficiency of the catalyst were investigated. The optimum experimental conditions for the catalytic reaction were found to be 3.21% of the catalyst load, the reaction time 7 h, and the reaction temperature. At 150 degrees C, the amount of catalyst is 4 mg, and the conversion of fourteen alkanes can reach 50.97% under this condition. On the other hand, a series of controlled experiments have been made to deduce that the mechanism of the catalytic oxidation of fourteen alkanes is the free radical initiation process of the supported catalyst X-Apts-NH_4-2 (X=SBA-15, KIT-6, FDU-12) with different carriers (X=SBA-15, KIT-6, FDU-12) used in the catalytic oxygen of fourteen alkanes. On the one hand, the effect of different carriers on the catalytic activity of the catalyst was investigated, and the catalyst carrier, which was more suitable for the reaction system, was selected in the three of the three, and on the other hand, the catalytic activity of the solid phase catalyst FDU-12-Apts-NH_4-2 under different experimental conditions was studied, and the catalytic activity was investigated. The effect of the amount of agent load, reaction time, reaction temperature, and the amount of catalyst on the catalytic activity of the catalyst has been determined. The best experimental conditions for the catalytic reaction are the catalyst load 2.55%, the reaction temperature 150, the reaction time 7 h and the catalyst amount 4 mg, and the conversion of the positive fourteen alkane has reached 52.84%. under this condition.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O643.36

【相似文献】

相关期刊论文 前10条

1 赵玉宝,李伟,张明慧,陶克毅;负载型纯单斜相态纳米氧化锆的制备[J];燃料化学学报;2001年S1期

2 韩忠霄;殷蓉;李景印;王德松;;聚苯胺改性负载型纳米二氧化钛的研究[J];无机盐工业;2007年12期

3 杨洪丽;李为民;姚建;;钙基负载型固体碱催化酯交换反应活性评价[J];燃料化学学报;2008年02期

4 韩俊杰;;负载型金属氧化物催化剂的分子设计[J];化学工程师;1993年02期

5 董文庚,郎志敏,陈学诚;一种负载型重金属离子富集剂的制备及初步应用[J];河北轻化工学院学报;1997年04期

6 林凯;辛嘉英;陈丹丹;张兰轩;王艳;夏春谷;;负载型纳米金催化葡萄糖氧化研究进展[J];分子催化;2014年01期

7 李峰,许可,李蕾,王作新,段雪;硅胶负载型硫酸锆表面相结构的理论研究[J];化学学报;2000年02期

8 黄宝琛;贺继东;徐玲;周健松;蔡明;唐学明;;负载型钛系催化剂合成高反1,4—聚异戊二烯的研究[J];青岛化工学院学报;1990年04期

9 贺继东,王娟;负载型钛催化剂催化异戊二烯溶液聚合动力学[J];青岛大学学报(工程技术版);2000年03期

10 李小红;郑旭煦;侯苛山;;负载型二氧化钛光催化剂的研究进展[J];重庆工商大学学报(自然科学版);2009年02期

相关会议论文 前10条

1 梁长海;;金属有机化学气相沉积选控制备负载型催化新材料[A];第七届全国催化剂制备科学与技术研讨会论文集[C];2009年

2 辛秀兰;洪珊;徐宝财;祝钧;;负载型纳米磷钼杂多酸盐制备研究[A];第十三届全国催化学术会议论文集[C];2006年

3 康卫民;付文丽;李全祥;程博闻;;纤维负载型催化材料研究进展[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年

4 董林;陈懿;;负载型金属氧化物催化剂表面相互作用研究[A];第十三届全国催化学术会议论文集[C];2006年

5 郭瑜;贾春江;司锐;;负载型胶体金颗粒催化材料用于低温催化一氧化碳氧化[A];中国化学会第29届学术年会摘要集——第06分会:稀土材料化学及应用[C];2014年

6 底兰波;徐志坚;亓滨;王凯;张丽娟;张秀玲;;大气压介质阻挡放电还原负载型金属离子的机理研究[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年

7 李洪芳;罗孟飞;鲁继青;;负载型金催化剂上甲醛低温氧化[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年

8 安立敦;齐世学;邹旭华;索掌怀;;催化性能稳定的负载型纳米金催化剂[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

9 罗文豪;王小慧;张明慧;李伟;陶克毅;;负载型钼的碳氮夹杂化合物制备及其加氢脱硫性能研究[A];中国化学会第26届学术年会应用化学分会场论文集[C];2008年

10 田然;王甫村;孙发民;朱金玲;吕倩;;负载型加氢催化剂金属组分在载体上的分布状态[A];第五届全国工业催化技术与应用年会论文集(上册)[C];2008年

相关博士学位论文 前8条

1 熊君;硅基负载型离子液体催化氧化燃油脱硫的研究[D];江苏大学;2015年

2 陈加利;高分散负载型钯基金属催化剂的制备、表征及其催化加氢性能研究[D];北京化工大学;2014年

3 吴海强;负载型点击聚合催化剂的探索[D];浙江大学;2016年

4 周硼;硫酸衍生固体酸—负载型硫酸及其盐和磺酸树脂催化性能的研究[D];大连理工大学;2003年

5 王佳;层状前驱体制备高分散负载型纳米镍基催化剂及其性能的研究[D];北京化工大学;2012年

6 郑维时;基于酚醛树脂微球为模板的负载型贵金属催化剂的制备及性质研究[D];吉林大学;2015年

7 辛俊娜;高分散负载型纳米Pd基加氢催化剂的研究[D];大连理工大学;2008年

8 李凝;负载型纳米ZrO_2/Al_2O_3复合载体及Ni基催化剂的研究[D];南昌大学;2006年

相关硕士学位论文 前10条

1 陈忱;负载手性金属铑和铱催化剂的制备及其催化性能研究[D];上海师范大学;2015年

2 李志雄;负载型铜基催化剂CO_2加氢合成甲醇性能研究[D];昆明理工大学;2015年

3 虞加欢;负载型纳米钯催化剂的制备及其在Suzuki交叉偶联中的应用[D];上海应用技术学院;2015年

4 何莎;光沉积和锚定法制备负载型金属催化剂材料及其催化性能研究[D];北京化工大学;2015年

5 韩瑞瑞;载体和助活性组分对负载型Pt基纳米金属催化剂结构与催化加氮性能的影响研究[D];北京化工大学;2015年

6 赵威;负载型钙钛矿催化氧化NO性能及其抗硫机理研究[D];湘潭大学;2015年

7 尚会姗;负载型Pt基纳米复合催化剂的制备及其对4-硝基苯酚加氢的研究[D];郑州大学;2016年

8 罗启文;固相法制备负载型酚类防老剂及其在丁苯橡胶中的应用研究[D];华南理工大学;2016年

9 赵琛;磁性负载型超强酸催化的锡林浩特褐煤的加氢裂解[D];中国矿业大学;2016年

10 张栋栋;负载型铁催化的兴和褐煤的加氢转化[D];中国矿业大学;2016年



本文编号:2134106

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2134106.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户01b22***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com