当前位置:主页 > 科技论文 > 化学论文 >

导电聚合物负载纳米粒子复合材料的制备及其催化与传感性能研究

发布时间:2018-07-23 10:56
【摘要】:近年来,纳米复合材料逐渐成为研究热点。导电聚合物作为一种导电性高、稳定性好的材料被广泛应用于纳米复合材料的制备中。本文采用电化学方法将导电聚合物负载功能纳米颗粒复合材料修饰到电极上,以此构建了新型的电化学传感器,将其应用于与疾病相关的小分子的检测中,从而为癌症或其他疾病的诊断以及临床治疗提供有效的技术支持。主要工作概括如下:(1)制备了一种高效灵敏的传感器并将其应用于具有致癌作用的亚硝酸盐的检测。首先利用电化学沉积法在玻碳电极表面修饰多壁碳纳米管(CNTs)掺杂聚3,4-乙烯二氧噻吩(PEDOT)纳米复合材料(PEDOT/CNTs),然后在PEDOT/CNTs纳米复合材料修饰电极(PEDOT/CNTs/GCE)表面进一步通过电化学沉积的方法修饰铜钴双金属纳米颗粒(Cu-Co/PEDOT/CNTs)。由于PEDOT/CNTs纳米复合材料具有良好的导电性、很高的机械强度、较大的比表面积,因而为铜钴双金属纳米颗粒的进一步电沉积提供了良好的基底。将该复合材料修饰电极应用于电化学催化亚硝酸盐发现,由于铜钴双金属纳米颗粒独特的结构以及铜钴的协同作用,Cu-Co/PEDOT/CNTs纳米复合材料表现出优异的电化学氧化亚硝酸盐的性能。在最佳条件下,该复合材料修饰电极对亚硝酸盐具有快速的响应(2 s以内),同时该亚硝酸盐传感器具有线性范围宽、灵敏度高等优点,线性范围为0.5-430μM,检出限为60 nM。该亚硝酸盐传感器具有很高的选择性,可以在抗坏血酸、苯甲酸钠、葡萄糖等同时存在的情况下实现对亚硝酸盐的灵敏检测。除此之外,该传感器还具有良好的重现性和长期稳定性,室温下放置30天后,其对亚硝酸盐的响应为最初的96%以上,可以很好地应用于实际样品的检测。(2)当细胞癌变之后,细胞中的过氧化氢含量会明显提高,因此实现过氧化氢的定量检测可以为癌症的诊断提供支持。本工作构建了一个过氧化氢(H2O2)传感器。首先采用一步法合成了过氧化物模拟酶普鲁士蓝纳米颗粒,然后利用电化学沉积法将3,4-乙烯二氧噻吩(EDOT)和普鲁士蓝纳米颗粒(PB)修饰到玻碳电极表面。得到的纳米复合材料是由PEDOT包裹的普鲁士蓝纳米颗粒构成的。PEDOT薄膜不仅可以对PB起到很好的保护作用从而确保PB的高稳定性,同时将不同的PB连接在一起形成具有高比表面积的葡萄状的复合材料,从而起到促进电子传递的作用。由于PEDOT优异的导电性以及PB独特的电催化活性,PEDOT/PB纳米材料修饰电极表现出了极好的电化学氧化多巴胺和电化学还原过氧化氢的活性。在最佳条件下,多巴胺传感器的线性范围为0.2-187μM,检出限为56 nM。同时该传感器可以在很宽的范围内定量检测过氧化氢,其线性范围为0.5-839μM,检出限为0.16μM(S/N=3)。该传感器同时具有优异的抗干扰性能、良好的再现性和长期稳定性,并可以应用于实际样品中过氧化氢的检测。(3)抗坏血酸在代谢反应中起着非常重要的调节作用,体内缺乏抗坏血酸会引起坏血病,因此实现对抗坏血酸的实际样品检测对于监测人体健康具有重要的意义。本工作通过简单温和的方法成功制备了普鲁士蓝纳米颗粒-多壁碳纳米管复合材料(CNTs-PB),然后通过电化学沉积法将CNTs-PB和PEDOT修饰到电极表面制得PEDOT/CNTs-PB纳米复合材料修饰电极(PEDOT/CNTsPB/GCE)并将其应用于抗坏血酸的定量检测。多壁碳纳米管管壁可以阻止普鲁士蓝中离子的流失从而可以对普鲁士蓝纳米颗粒起到很好的保护作用。而PEDOT包裹在碳纳米管外,可以将不同的CNTs-PB连接在一起形成一种密集多孔的网状结构,也对普鲁士蓝起到一定的保护作用,使其更加稳定。高的比表面积是该复合材料的一大优点,可以增加电极与电解质溶液的接触面积,同时可以促进电子的传递。将该PEDOT/CNTs-PB纳米复合材料修饰电极应用于电化学催化抗坏血酸。综上,该传感器具有线性范围宽、灵敏度高等优点。该抗坏血酸传感器的线性范围为0.3-430.3μM(R2=0.9981),该抗坏血酸传感器的检出限为80 nM(S/N=3)。还利用标准加入法检测了血清中的抗坏血酸,回收率在95.6-104.8%之间,相对标准偏差在3.2-4.3%之间。
[Abstract]:In recent years, nanocomposites have gradually become the focus of research. As a kind of high conductivity and good stability materials, conductive polymers are widely used in the preparation of nanocomposites. In this paper, an electrochemical method was used to modify the conductive polymer loaded nano particle composite to the electrode, and a new electrochemical transmission was constructed. It is applied to the detection of small molecules associated with disease to provide effective technical support for the diagnosis and clinical treatment of cancer or other diseases. The main work is summarized as follows: (1) a highly sensitive sensor is prepared and applied to the detection of nitrites with carcinogenic effects. First, electrochemical precipitation is used. Poly wall carbon nanotube (CNTs) doped poly 3,4- ethylene two oxygen thiophene (PEDOT) nanocomposite (PEDOT/CNTs) was modified on a glassy carbon electrode surface, and then copper cobalt bimetallic nanoparticles (Cu-Co/PEDOT/CNTs) was modified by electrochemical deposition on the surface of PEDOT/CNTs nanocomposite modified electrode (PEDOT/CNTs/GCE). Due to PEDOT, PEDOT (PEDOT/CNTs/GCE) surface was further modified by electrochemical deposition. /CNTs nanocomposites have good electrical conductivity, high mechanical strength and larger specific surface area, thus providing a good substrate for further electrodeposition of copper and cobalt bimetal nanoparticles. The composite modified electrode was applied to the electrochemical catalytic nitrite discovery, due to the unique structure of copper cobalt bimetal nanoparticles. With the synergistic effect of copper and cobalt, Cu-Co/PEDOT/CNTs nanocomposites exhibit excellent electrochemical oxidation of nitrites. Under the optimum conditions, the composite modified electrode has a rapid response to nitrite (less than 2 s). At the same time, the nitrite sensor has a wide linear range, high sensitivity, and a linear range of 0.. 5-430 M with a detection limit of 60 nM., the nitrite sensor has high selectivity and can be sensitive to nitrite in the presence of ascorbic acid, sodium benzoate, glucose and so on. In addition, the sensor also has good reproducibility and long-term stability. At room temperature, it is used for nitrite for 30 days. The response is more than 96%, which can be well applied to the detection of actual samples. (2) the content of hydrogen peroxide in the cells will be significantly increased when the cells are cancerous. Therefore, the quantitative detection of hydrogen peroxide can provide support for the diagnosis of cancer. A one step method is first used in this work. The peroxisome Prussian blue nanoparticles were synthesized, and the 3,4- ethylene two oxygen thiophene (EDOT) and Prussian blue nanoparticles (PB) were modified to the surface of the glassy carbon electrode by electrochemical deposition. The nanocomposite is a.PEDOT film composed of Prussian blue nanoparticles encapsulated by PEDOT, which not only can be very good for PB. The protective effect ensures the high stability of PB, while connecting different PB together to form a high specific surface area of the grape like composite, which promotes electron transfer. The PEDOT/PB Nanomaterial Modified electrode shows excellent electrochemical oxygen due to the excellent electrical conductivity of PEDOT and the unique electrocatalytic activity of PB. At optimal conditions, the linear range of the dopamine sensor is 0.2-187 mu M, the detection limit is 56 nM., and the sensor can detect hydrogen peroxide in a wide range, with a linear range of 0.5-839 mu M and the detection limit of 0.16 mu M (S/N=3). The sensor has excellent resistance at the same time. The interference performance, good reproducibility and long-term stability can be applied to the detection of hydrogen peroxide in actual samples. (3) ascorbic acid plays a very important role in metabolic reaction, and the lack of ascorbic acid in the body causes scurvy in the body, so it is important to detect the actual sample test against the bad blood acid for monitoring the health of the human body. The Prussian blue nanoparticle multi walled carbon nanotube composite (CNTs-PB) was successfully prepared by a simple and mild method, and then the PEDOT/CNTs-PB nanocomposite modified electrode (PEDOT/CNTsPB/GCE) was prepared by electrochemical deposition of CNTs-PB and PEDOT to the surface of the electrode and applied to the ascorbic acid determination. Measurement. The wall of the multi wall carbon nanotube can prevent the loss of Prussian blue ions so that the Prussian blue nanoparticles can be well protected. While PEDOT wrapped in carbon nanotubes, different CNTs-PB can be linked together to form a dense porous network structure, and also a certain protection for Prussian blue. The high surface area is one of the advantages of the composite, which can increase the contact area between the electrode and electrolyte solution and promote the transfer of electrons. The PEDOT/CNTs-PB nanocomposite modified electrode is applied to the electrochemical catalytic ascorbic acid. The sensor has a wide linear range and sensitivity. The linear range of the ascorbic acid sensor is 0.3-430.3 mu M (R2=0.9981), and the detection limit of the ascorbic acid sensor is 80 nM (S/N=3). The standard addition method is used to detect ascorbic acid in serum, the recovery rate is between 95.6-104.8%, and the relative standard deviation is between 3.2-4.3%.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O657.1;TP212

【相似文献】

相关期刊论文 前10条

1 唐伟家;导电纳米复合材料[J];合成材料老化与应用;2001年02期

2 李兴田;聚酰胺6纳米复合材料的新进展[J];化学工业与工程技术;2001年02期

3 李淑玉;导电纳米复合材料[J];建材工业信息;2001年10期

4 ;可溶性纳米复合材料[J];技术与市场;2001年04期

5 钱红梅,郝成伟;粘土/有机纳米复合材料的研究进展[J];皖西学院学报;2002年02期

6 王珂,朱湛,郭炳南;聚对苯二甲酸乙二醇酯/蛭石纳米复合材料的制备[J];应用化学;2003年07期

7 钟厉,韩西;纳米复合材料的研究应用[J];重庆交通学院学报;2003年03期

8 金延;纳米复合材料及应用[J];金属功能材料;2004年06期

9 ;美国纳米复合材料需求将增长[J];橡塑技术与装备;2008年03期

10 赵中坚;王强华;;汽车中的纳米复合材料:研究活动及商业现状[J];玻璃钢;2008年01期

相关会议论文 前10条

1 肖红梅;杨洋;李元庆;郑斌;付绍云;;功能纳米复合材料研究进展[A];第十五届全国复合材料学术会议论文集(上册)[C];2008年

2 葛岭梅;周安宁;李天良;曲建林;;矿物纳米复合材料的研究进展[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年

3 马永梅;;塑料/膨润土纳米复合材料市场应用[A];2003年中国纳微粉体制备与技术应用研讨会论文集[C];2003年

4 陈洁;徐晓楠;杨玲;;纳米复合材料的阻燃研究[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

5 赵海波;徐波;王俊胜;王玉忠;;主链含磷阻燃共聚酯/硫酸钡纳米复合材料的研究[A];2009年中国阻燃学术年会论文集[C];2009年

6 张忠;;多级次多尺度纳米复合材料力学性能研究[A];2010年第四届微纳米海峡两岸科技暨纳微米系统与加工制备中的力学问题研讨会摘要集[C];2010年

7 卢小泉;;基于纳米复合材料的电化学生物传感器[A];第六届海峡两岸分析化学会议摘要论文集[C];2010年

8 周安宁;杨伏生;曲建林;李天良;葛岭梅;;矿物纳米复合材料研究进展[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(下卷)[C];2001年

9 上官文峰;;纳米复合材料的构筑及其光催化性能[A];纳微粉体制备与应用进展——2002年纳微粉体制备与技术应用研讨会论文集[C];2002年

10 林鸿福;;加速聚合物/粘土纳米复合材料的产业化进程[A];浙江省科协学术研究报告——浙江优势非金属矿产资源的开发利用研究论文集[C];2004年

相关重要报纸文章 前10条

1 宋玉春;纳米复合材料能否风行?[N];中国石化报;2005年

2 李闻芝;纳米复合材料产业化研讨会将开[N];中国化工报;2004年

3 李伟;汽车用上纳米复合材料部件[N];中国化工报;2004年

4 渤海投资 周延;武汉塑料 突破60日均线压制[N];证券时报;2004年

5 唐伟家 吴汾 李茂彦;尼龙纳米复合材料的开发和市场[N];中国包装报;2008年

6 华凌;纳米复合材料提升自充电池性能[N];中国化工报;2014年

7 塑化;聚合物系纳米复合材料发展前景广阔[N];国际商报;2003年

8 唐伟家 吴汾 李茂彦;尼龙纳米复合材料的开发和包装应用[N];中国包装报;2008年

9 本报记者 王海霞;纳米复合材料将广泛应用到新能源领域[N];中国能源报;2009年

10 刘霞;高效存储氢的纳米复合材料研制成功[N];科技日报;2011年

相关博士学位论文 前10条

1 李念武;锂硫二次电池用碳基含硫正极材料的研究[D];南京航空航天大学;2013年

2 夏雷;尼龙6及其纳米复合材料的热氧稳定性研究[D];浙江大学;2013年

3 杜青青;高效荧光碳点合成及其功能复合材料研究[D];山东大学;2015年

4 刘江涛;四种纳米复合材料的制备及其电化学和电化学传感研究[D];西北大学;2015年

5 李苏原;SnO_2/C纳米复合材料的制备及其储锂性能研究[D];兰州大学;2015年

6 郭改萍;环境友好大豆蛋白质材料改性研究[D];北京化工大学;2015年

7 孙逊;新型介孔无机物/聚苯胺纳米复合材料的制备及其性能研究[D];兰州大学;2012年

8 卜小海;螺旋聚炔基纳米复合材料的制备及其红外辐射性能研究[D];东南大学;2015年

9 王洪宾;LiFePO_4/C纳米复合材料的设计、合成及其储锂性能研究[D];吉林大学;2015年

10 杨慧;基于溶剂浇铸法和沉积法改性的聚对苯二甲酸乙二醇酯(PET)[D];上海大学;2015年

相关硕士学位论文 前10条

1 易华玉;纳米复合材料和酶放大构建凝血酶电化学适体传感器的研究[D];西南大学;2015年

2 于丹;BaTiO_3基介电陶瓷和纳米复合材料的制备及性能研究[D];浙江大学;2015年

3 王超;PVC纳米复合材料的制备及其性能研究[D];河北大学;2015年

4 谭丽莎;功能化磁性纳米复合材料的制备及其对Pb(Ⅱ)和Cr(Ⅵ)的选择性去除研究[D];浙江大学;2015年

5 杜青;锆基纳米复合材料深度净化水体中的微量重金属[D];燕山大学;2015年

6 王正奇;硫化锌纳米复合材料的制备、表征及性质研究[D];陕西科技大学;2015年

7 明洪涛;TiO_2/Au核壳纳米复合材料的制备及其光学性质研究[D];东北师范大学;2015年

8 赵元旭;多壁碳纳米管/聚碳酸酯复合材料的制备与性能研究[D];郑州大学;2015年

9 孙艺铭;金/碳纳米复合材料生物传感器检测多药耐药基因MDR1及其表达蛋白ABCB1的实验研究[D];福建医科大学;2015年

10 陈亚;基于碳纳米复合材料及β-环糊精对手性小分子识别研究[D];西南大学;2015年



本文编号:2139173

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2139173.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户45f82***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com