当前位置:主页 > 科技论文 > 化学论文 >

金属-有机框架结构材料的制备及其在电化学生物传感中的应用

发布时间:2018-08-30 15:44
【摘要】:随着科技水平的逐渐发展,脑神经电分析化学的研究正在成为生命分析化学领域的热点课题之一。脑神经化学过程的研究是涉及分析化学、生命科学等多种学科相互交叉的前沿研究领域。分析化学的发展促进了脑神经科学的发展,同时脑神经科学的发展也给分析化学提供了更多的机遇和挑战。就反应、传递、分布等方面而言,神经化学的动态过程展现了神经元与脑结构功能的独特性,我们需要深入挖掘生物体由复杂的神经活动组成的神经化学过程的本质。中枢神经系统约38亿年进化为其化学研究带来了特殊的复杂性,神经化学与反应容器或其他生物化学中的纯化学反应不同,不可仅通过传统的化学方法来理解。幸运的是,科学家在神经科学的研究中取得了巨大的进步,这是由新的微观或纳米概念和技术推动的,特别是关于定性和定量监测活动物脑中神经化学物质的(近)实时变化(称为体内分析)。利用电化学分析方法来进行脑神经系统中神经递质、调质、能量代谢物质、自由基等重要生理活性物质的活体实时动态分析,在脑功能和各种脑疾病的生理和病理研究中正在发挥着重要的作用。在前人种类繁多的研究成果基础上,设想利用材料方面的优势为活体电化学分析探索一条新的道路。本论文以近年来研究热点之一的金属-有机框架结构材料为基础,利用其本身高孔隙率、大比表面积以及良好的可调控和可设计性的优点,并将其或其热解产物与多壁碳纳米管、石墨烯或碳纤维等一系列碳材料相复合。碳材料作为复合材料的基底构筑了材料与电极之间良好的电子传递通道,有效地克服了其导电性较差的缺点。其中,由碳纤维为基底的金属-有机框架结构材料或其热解产物复合材料制成的微电极具有微米级尺寸,对生物体的损伤较小,且活体伏安分析法具有较高的时间和空间分辨率等特点,非常适合于脑内生理条件下电化学活性物质的活体分析检测。本论文通过在不同碳材料基底上复合金属-有机框架结构或其热解产物,制备了一系列复合材料电化学生物传感器,并成功地对鼠脑内一些重要的生理电化学活性物质(5-羟色胺和氧气等)进行了脑神经化学过程的电化学分析研究,主要研究内容以及相关结论包括以下三个部分:(1)我们合成了基于碳材料(多壁碳纳米管和石墨烯)的金属-有机框架结构(Al-MIL-53-NH2)复合材料电化学生物传感器,通过与碳材料相结合完善了材料本身的电子传递途径,有效地提高了金属-有机框架结构材料的导电性,同时利用金属-有机框架结构材料本身所具有的良好的多孔吸附特性,对多巴胺进行了富集后的电化学分析检测。结果显示,多巴胺的氧化峰电流在一定浓度范围内呈现良好的线性关系,同时还发现该材料对抗坏血酸也有一定的屏蔽效果。(2)我们制备了基于金属-有机框架结构(UiO-66-SO3H)的碳纤维微电极电化学生物传感器,并成功地利用其良好的富集效果检测出鼠脑纹状体脑区5-羟色胺的基础浓度。金属-有机框架结构与碳纤维地结合构建了一个良好的电子传递通道,有效地提高了金属-有机框架结构材料的导电能力。动物的验证实验强有力地证明了我们所检测的脑生理电化学活性的物质正是5-羟色胺。我们所制备的基于金属-有机框架结构的碳纤维复合材料微电极电化学生物传感器具有选择性良好,灵敏度较高的特点。(3)我们制备了基于沸石咪唑酯框架结构(ZIF-67)热解产物碳纤维微电极电化学生物传感器。这种材料作为非贵金属的氧还原催化剂在人工脑脊液中具有近乎四电子的良好催化效果,大大减少了两电子还原产物过氧化氢的生成。同时由于其抗干扰效果很好,我们成功将其用于鼠脑海马体脑区氧气浓度的检测,并对多种生理病理情况下氧气浓度变化情况进行实时监测。这对于生理学与病理学的研究都具有极其重要的意义。
[Abstract]:With the development of science and technology, the study of electroencephalographic analysis chemistry is becoming one of the hot topics in the field of life analytical chemistry. The development of brain neuroscience also provides more opportunities and challenges for analytical chemistry. In terms of reaction, transmission, distribution, and so on, the dynamic processes of Neurochemistry demonstrate the uniqueness of neurons and brain structures and functions. We need to dig deeply into the nature of neurochemical processes in organisms composed of complex neural activities. The evolution of systems over the past 3.8 billion years has brought special complexity to their chemical research. Neurochemistry, unlike pure chemical reactions in reaction containers or other biochemistry, cannot be understood solely by traditional chemical methods. Fortunately, scientists have made tremendous progress in neuroscience research, which is based on new microscopic or nanoscale concepts. Technology-driven, especially for qualitative and quantitative monitoring of near-real-time (in vivo) changes in neurochemicals in the brain of living animals. In vivo dynamic analysis of neurotransmitters, modulators, energy metabolites, free radicals, and other important physiological active substances in the brain nervous system using electrochemical methods. Based on the results of previous studies, it is envisaged to explore a new way for in vivo electrochemical analysis by utilizing the advantages of materials. This paper is based on the metal-organic frameworks, which are one of the hotspots in recent years. High porosity, large specific surface area, good controllability and designability, and their pyrolysis products are compounded with a series of carbon materials, such as multi-walled carbon nanotubes, graphene or carbon fibers. Carbon materials as the substrate of composite materials construct a good electron transfer channel between materials and electrodes, and effectively overcome them. Among them, microelectrodes made of metal-organic frameworks based on carbon fibers or their pyrolysis products have the characteristics of micron size, less damage to organisms, and high time and spatial resolution in vivo voltammetry, so they are very suitable for electronics in brain physiological conditions. In this paper, a series of composite electrochemical biosensors were fabricated by using metal-organic frameworks or their pyrolysis products on different carbon substrates. Some important electrophysiological active substances (5-hydroxytryptamine, oxygen, etc.) in the rat brain were successfully neutralized. The main research contents and conclusions of the electrochemical analysis of the chemical process include the following three parts: (1) We synthesized metal-organic frameworks (Al-MIL-53-NH2) composite electrochemical biosensors based on carbon materials (multi-walled carbon nanotubes and graphene). The electrons of the materials were improved by combining with carbon materials. The conductivity of metal-organic frameworks was effectively improved by the transfer pathway, and the electrochemical analysis of dopamine was carried out by using the good porous adsorption characteristics of metal-organic frameworks. The results showed that the oxidation peak current of dopamine was good in a certain concentration range. (2) We fabricated a carbon fiber microelectrode electrochemical biosensor based on metal-organic framework (UiO-66-SO3H) and successfully detected the basal concentration of 5-hydroxytryptamine in the striatum of rat brain using its good enrichment effect. A good electron transfer channel is constructed by the combination of the frame structure and carbon fiber, which effectively improves the conductivity of the metal-organic frame structure materials. Animal experiments strongly demonstrate that the electrophysiological activity of the brain detected by us is exactly 5-hydroxytryptamine. Carbon fiber composite microelectrode electrochemical biosensor based on zeolite imidazole ester (ZIF-67) pyrolysis product was prepared. This material was used as a non-noble metal oxygen reduction catalyst in artificial cerebrospinal fluid (ACF). Because of its good anti-interference effect, we have successfully applied it to the detection of oxygen concentration in the hippocampus of rat brain and real-time monitoring of oxygen concentration changes under various physiological and pathological conditions. Pathological studies are of great importance.
【学位授予单位】:上海师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O657.1


本文编号:2213533

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2213533.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f1c33***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com